greatly simplifies the interpretation of NL queries, the
generation of NL answers, and the control of user dia-
log. The fine-tuning of an LLM to follow instructions
generated from a data source is far more challenging.
LangChain offers a useful framework to isolate the
development of the database interface from the under-
lying LLM, and the LlamaIndex provides facilities to
connect an LLM and a data source.
Lastly, the leaderboards mentioned before provide
references to the latest evolutions in LLM applica-
tions related to the topics of this paper.
REFERENCES
Abdullah, M., Madain, A., and Jararweh, Y. (2022).
Chatgpt: Fundamentals, applications and social
impacts. In 2022 Ninth International Confer-
ence on Social Networks Analysis, Management
and Security (SNAMS’22), pages 1–8. doi:
10.1109/SNAMS58071.2022.10062688.
Affolter, K., Stockinger, K., and Bernstein, A. (2019). A
comparative survey of recent natural language inter-
faces for databases. The VLDB Journal, 28.
Anand, Y. et al. (2023). Gpt4all-j: An
apache-2 licensed assistant-style chatbot.
https://static.nomic.ai/gpt4all/2023 GPT4All-
J Technical Report 2.pdf.
Askell, A. et al. (2021). A general language assis-
tant as a laboratory for alignment. arXiv. doi:
10.48550/arXiv.2112.00861.
Caldarini, G., Jaf, S., and McGarry, K. (2022). A literature
survey of recent advances in chatbots. Information,
13(1).
Carvalho, I. and Ivanov, S. (2023). Chatgpt for tourism:
applications, benefits, and risks. Tourism Review. doi:
10.1108/TR-02-2023-0088.
Conover, M. et al. (2023). Free dolly: Introducing
the world’s first truly open instruction-tuned llm.
https://www.databricks.com/blog/2023/04/12/dolly-
first-open-commercially-viable-instruction-tuned-
llm. online: May 22, 2023.
Dettmers, T., Pagnoni, A., Holtzman, A., and Zettlemoyer,
L. (2023). Qlora: Efficient finetuning of quantized
llms.
Diefenbach, D., Both, A., Singh, K., and Maret, P. (2020).
Towards a question answering system over the seman-
tic web. Semant. Web, 11(3):421–439.
Fitria, T. N. (2023). Artificial intelligence (ai) technol-
ogy in openai chatgpt application: A review of chat-
gpt in writing english essay. ELT Forum: Journal
of English Language Teaching, 12(1):44–58. doi:
10.15294/elt.v12i1.64069.
Fraiwan, M. and Khasawneh, N. (2023). A review of
chatgpt applications in education, marketing, soft-
ware engineering, and healthcare: Benefits, draw-
backs, and research directions. arXiv. doi:
10.48550/arXiv.2305.00237.
Hoffmann, J. et al. (2022). Training compute-
optimal large language models. arXiv. doi:
10.48550/arXiv.2203.15556.
Hu, E. J. et al. (2021). Lora: Low-rank adapta-
tion of large language models. arXiv. doi:
10.48550/arXiv.2106.09685.
Jurafsky, D. and Martin, J. H. (2023). Speech and Language
Processing: An Introduction to Natural Language
Processing, Computational Linguistics, and Speech
Recognition. Prentice Hall. Third Edition draft.
Kemper, D. (2023). Querying complex
database schemas with gpt and langchain.
https://analytix.nl/post/querying-complex-database-
schemas-with-gpt-and-langchain. online: May 22,
2023.
Lecler, A., Duron, L., and Soyer, P. (2023). Revolutioniz-
ing radiology with gptbased models: Current appli-
cations, future possibilities and limitations of chat-
gpt. Diagnostic and Interventional Imaging. doi:
10.1016/j.diii.2023.02.003.
Liu, A., Hu, X., Wen, L., and Yu, P. S. (2023). A com-
prehensive evaluation of chatgpt’s zero-shot text-to-
sql capability.
Manning, C. D. (2022). Human Language Understand-
ing & Reasoning. Daedalus, 151(2):127–138. doi:
10.1162/daed a 01905.
Motger, Q., Franch, X., and Marco, J. (2022). Software-
based dialogue systems: Survey, taxonomy, and chal-
lenges. ACM Comput. Surv., 55(5).
Neelakantan, A. et al. (2022). Text and code
embeddings by contrastive pre-training. doi:
10.48550/ARXIV.2201.10005.
OpenAI (2023). Gpt-4 technical report. arXiv. doi:
10.48550/arXiv.2303.08774.
Ouyang, L. et al. (2022). Training language models to fol-
low instructions with human feedback. In Proceed-
ings of the Advances in Neural Information Process-
ing Systems 35 (NeurIPS’22). online: May 25, 2023.
Taori, R., Gulrajani, I., Zhang, T., Dubois, Y., Li, X.,
Guestrin, C., Liang, P., and Hashimoto, T. B. (2023).
Stanford alpaca: An instruction-following llama
model. https://github.com/tatsu-lab/stanford alpaca.
Touvron, H. et al. (2023). Llama: Open and effi-
cient foundation language models. arXiv. doi:
10.48550/arXiv.2302.13971.
Tunstall, L., von Werra, L., and Wolf, T. (2022). Natu-
ral Language Processing with Transformers, Revised
Edition. O’Reilly Media, Inc.
Vaswani, A. et al. (2017). Attention is all you need. In
Proceedings of the Advances in Neural Information
Processing Systems 30 (NIPS’17), volume 30.
Wang, F.-Y. et al. (2023). Chatgpt for computational social
systems: From conversational applications to human-
oriented operating systems. IEEE Transactions on
Computational Social Systems, 10(2):414–425. doi:
10.1109/TCSS.2023.3252679.
Wang, Y. et al. (2022). Self-instruct: Aligning
language model with self generated instructions.
doi:10.48550/arXiv.2212.10560.
WEBIST 2023 - 19th International Conference on Web Information Systems and Technologies
380