and Constrained Optimization Problems Using the R-
Package Flacco, pages 93–123. Studies in Classifi-
cation, Data Analysis, and Knowledge Organization.
Springer International Publishing.
Koza, J. R. (1989). Hierarchical genetic algorithms oper-
ating on populations of computer programs. In Srid-
haran, N. S., editor, Proceedings of the Eleventh In-
ternational Joint Conference on Artificial Intelligence
IJCAI-89, volume 1, pages 768–774. Morgan Kauf-
mann.
Long, F. X., van Stein, B., Frenzel, M., Krause, P., Gitterle,
M., and B
¨
ack, T. (2022). Learning the characteris-
tics of engineering optimization problems with appli-
cations in automotive crash. In Proceedings of the
Genetic and Evolutionary Computation Conference,
pages 1227–1236.
Long, F. X., Vermetten, D., Kononova, A. V., Kalkreuth,
R., Yang, K., B
¨
ack, T., and van Stein, N. (2023).
Reproducibility files and additional figures. https:
//doi.org/10.5281/zenodo.7896138.
McInnes, L., Healy, J., Saul, N., and Grossberger, L. (2018).
Umap: Uniform manifold approximation and projec-
tion. The Journal of Open Source Software, 3(29):861.
Mersmann, O., Bischl, B., Trautmann, H., Preuss, M.,
Weihs, C., and Rudolph, G. (2011). Exploratory land-
scape analysis. In Proceedings of the 13th Annual
Conference on Genetic and Evolutionary Computa-
tion, GECCO ’11, page 829–836. ACM.
Mersmann, O., Preuss, M., and Trautmann, H. (2010).
Benchmarking evolutionary algorithms: Towards ex-
ploratory landscape analysis. In Schaefer, R., Cotta,
C., Kołodziej, J., and Rudolph, G., editors, Parallel
Problem Solving from Nature, PPSN XI, pages 73–82.
Springer Berlin Heidelberg.
Mu
˜
noz, M. A., Kirley, M., and Smith-Miles, K. (2022).
Analyzing randomness effects on the reliability of
exploratory landscape analysis. Natural Computing,
21(2):131–154.
Mu
˜
noz, M. A. and Smith-Miles, K. (2020). Generating new
space-filling test instances for continuous black-box
optimization. Evolutionary computation, 28(3):379–
404.
Mu
˜
noz, M. A., Sun, Y., Kirley, M., and Halgamuge, S. K.
(2015). Algorithm selection for black-box continu-
ous optimization problems: A survey on methods and
challenges. Information Sciences, 317:224–245.
Prager, R. P. and Trautmann, H. (2023a). Nullifying the
inherent bias of non-invariant exploratory landscape
analysis features. In Applications of Evolutionary
Computation: 26th European Conference, EvoAppli-
cations 2023, Held as Part of EvoStar 2023, Brno,
Czech Republic, April 12–14, 2023, Proceedings,
pages 411–425. Springer.
Prager, R. P. and Trautmann, H. (2023b). Pflacco: Feature-
Based Landscape Analysis of Continuous and Con-
strained Optimization Problems in Python. Evolution-
ary Computation, pages 1–25.
Renau, Q., Doerr, C., Dreo, J., and Doerr, B. (2020). Ex-
ploratory landscape analysis is strongly sensitive to
the sampling strategy. In B
¨
ack, T., Preuss, M., Deutz,
A., Wang, H., Doerr, C., Emmerich, M., and Traut-
mann, H., editors, Parallel Problem Solving from Na-
ture – PPSN XVI, pages 139–153. Springer Interna-
tional Publishing.
Renau, Q., Dr
´
eo, J., Doerr, C., and Doerr, B. (2021).
Towards explainable exploratory landscape analysis:
extreme feature selection for classifying bbob func-
tions. In Applications of Evolutionary Computa-
tion: 24th International Conference, EvoApplica-
tions 2021, Held as Part of EvoStar 2021, Virtual
Event, April 7–9, 2021, Proceedings 24, pages 17–33.
Springer.
Rice, J. R. (1976). The algorithm selection problem. vol-
ume 15 of Advances in Computers, pages 65–118. El-
sevier.
Schweim, D., Wittenberg, D., and Rothlauf, F. (2021). On
sampling error in genetic programming. Natural Com-
puting, pages 1–14.
Smith-Miles, K. and Mu
˜
noz, M. A. (2023). Instance space
analysis for algorithm testing: Methodology and soft-
ware tools. ACM Computing Surveys, 55(12):1–31.
Sobol’, I. M. (1967). On the distribution of points in
a cube and the approximate evaluation of integrals.
USSR Computational Mathematics and Mathematical
Physics, 7(4):86–112.
Tackett, W. A. (1995). Mining the genetic program. IEEE
Expert, 10(3):28–38.
Thomaser, A., Vogt, M.-E., Kononova, A. V., and B
¨
ack,
T. (2023). Transfer of multi-objectively tuned cma-es
parameters to a vehicle dynamics problem. In Evo-
lutionary Multi-Criterion Optimization: 12th Interna-
tional Conference, EMO 2023, Leiden, The Nether-
lands, March 20–24, 2023, Proceedings, pages 546–
560. Springer.
Tian, Y., Peng, S., Zhang, X., Rodemann, T., Tan, K. C., and
Jin, Y. (2020). A recommender system for metaheuris-
tic algorithms for continuous optimization based on
deep recurrent neural networks. IEEE Transactions
on Artificial Intelligence, 1(1):5–18.
van Stein, B., Long, F. X., Frenzel, M., Krause, P., Gitterle,
M., and B
¨
ack, T. (2023). Doe2vec: Deep-learning
based features for exploratory landscape analysis.
Vermetten, D., Ye, F., B
¨
ack, T., and Doerr, C. (2023a). MA-
BBOB: Many-affine combinations of BBOB func-
tions for evaluating AutoML approaches in noiseless
numerical black-box optimization contexts. AutoML
2023.
Vermetten, D., Ye, F., and Doerr, C. (2023b). Using affine
combinations of BBOB problems for performance as-
sessment. CoRR, abs/2303.04573.
ˇ
Skvorc, U., Eftimov, T., and Koro
ˇ
sec, P. (2021a). The ef-
fect of sampling methods on the invariance to func-
tion transformations when using exploratory land-
scape analysis. In 2021 IEEE Congress on Evolution-
ary Computation (CEC), pages 1139–1146.
ˇ
Skvorc, U., Eftimov, T., and Koro
ˇ
sec, P. (2021b). A
Complementarity Analysis of the COCO Benchmark
Problems and Artificially Generated Problems, page
215–216. ACM.
ECTA 2023 - 15th International Conference on Evolutionary Computation Theory and Applications
130