Brogi, A., Corradini, A., and Soldani, J. (2019). Estimat-
ing costs of multi-component enterprise applications.
Formal Aspects of Computing, 31(4):421–451.
Cerna, S., Guyeux, C., Arcolezi, H. H., Couturier, R., and
Royer, G. (2020). A comparison of lstm and xgboost
for predicting firemen interventions. In Rocha,
´
A.,
Adeli, H., Reis, L. P., Costanzo, S., Orovic, I., and
Moreira, F., editors, Trends and Innovations in In-
formation Systems and Technologies, pages 424–434,
Cham. Springer International Publishing.
Chai, T. and Draxler, R. R. (2014). Root mean square er-
ror (rmse) or mean absolute error (mae)? – arguments
against avoiding rmse in the literature. Geoscientific
Model Development, 7(3):1247–1250.
Chapman, P., Clinton, J., Kerber, R., Khabaza, T., Reinartz,
T., Shearer, C., and Wirth, R. (2000). Crisp-dm
1.0 step-by-step data mining guide. resreport, The
CRISP-DM consortium.
Chen, T. and Guestrin, C. (2016). Xgboost: A scalable
tree boosting system. In Proceedings of the 22nd
ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining, KDD ’16, page
785–794, New York, NY, USA. Association for Com-
puting Machinery.
Evangelinou, A., Ciavotta, M., Ardagna, D., Kopaneli, A.,
Kousiouris, G., and Varvarigou, T. (2018). Enterprise
applications cloud rightsizing through a joint bench-
marking and optimization approach. Future Genera-
tion Computer Systems, 78:102–114.
Gupta, S. and Dinesh, D. A. (2017). Resource usage pre-
diction of cloud workloads using deep bidirectional
long short term memory networks. In 2017 IEEE
International Conference on Advanced Networks and
Telecommunications Systems (ANTS), pages 1–6.
Herbst, N. R., Huber, N., Kounev, S., and Amrehn, E.
(2013). Self-adaptive workload classification and
forecasting for proactive resource provisioning. In
Proceedings of the 4th ACM/SPEC International Con-
ference on Performance Engineering, pages 187–198.
Hochreiter, S. and Schmidhuber, J. (1997). Long short-term
memory. Neural Computation, 9(8):1735–1780.
Hyndman, R. J. and Koehler, A. B. (2006). Another look at
measures of forecast accuracy. International Journal
of Forecasting, 22(4):679–688.
Hyndman, R. J., Koehler, A. B., Snyder, R. D., and Grose,
S. (2002). A state space framework for automatic fore-
casting using exponential smoothing methods. Inter-
national Journal of Forecasting, 18(3):439–454.
Ledolter, J. (1989). The effect of additive outliers on the
forecasts from arima models. International Journal of
Forecasting, 5(2):231–240.
Li, H. and Scheibli, D. (2010). On cost modeling for hosted
enterprise applications. In Cloud Computing, pages
261–269. Springer Berlin Heidelberg.
Liu, F. T., Ting, K. M., and Zhou, Z.-H. (2008). Isolation
forest. In 2008 Eighth IEEE International Conference
on Data Mining, pages 413–422.
Livera, A. M. D., Hyndman, R. J., and Snyder, R. D.
(2011). Forecasting time series with complex seasonal
patterns using exponential smoothing. Journal of
the American Statistical Association, 106(496):1513–
1527.
Marquard, U. and G
¨
otz, C. (2008). Sap standard application
benchmarks - it benchmarks with a business focus. In
Kounev, S., Gorton, I., and Sachs, K., editors, Perfor-
mance Evaluation: Metrics, Models and Benchmarks,
pages 4–8, Berlin, Heidelberg. Springer Berlin Hei-
delberg.
Mart
´
ınez, F., Fr
´
ıas, M. P., P
´
erez, M. D., and Rivera, A. J.
(2019). A methodology for applying k-nearest neigh-
bor to time series forecasting. Artificial Intelligence
Review, 52(3):2019–2037.
Masdari, M. and Khoshnevis, A. (2020). A survey and
classification of the workload forecasting methods in
cloud computing. Cluster Computing, 23(4):2399–
2424.
M
¨
uller, H., Kharitonov, A., Nahhas, A., Bosse, S., and Tur-
owski, K. (2021). Addressing it capacity management
concerns using machine learning techniques. SN Com-
puter Science, 3(1):26.
Nisar, F. and Ahmed, B. (2020). Resource utilization in
data center by applying arima approach. In Bajwa,
I. S., Sibalija, T., and Jawawi, D. N. A., editors, Intel-
ligent Technologies and Applications, pages 752–761,
Singapore. Springer Singapore.
Siami-Namini, S., Tavakoli, N., and Siami Namin, A.
(2018). A comparison of arima and lstm in fore-
casting time series. In 2018 17th IEEE International
Conference on Machine Learning and Applications
(ICMLA), pages 1394–1401.
Tang, L., Pan, H., and Yao, Y. (2018). K-nearest neigh-
bor regression with principal component analysis for
financial time series prediction. In Proceedings of the
2018 International Conference on Computing and Ar-
tificial Intelligence, ICCAI 2018, page 127–131, New
York, NY, USA. Association for Computing Machin-
ery.
Taylor, S. J. and Letham, B. (2018). Forecasting at scale.
The American Statistician, 72(1):37–45.
Wu, C., Buyya, R., and Ramamohanarao, K. (2019).
Cloud pricing models: Taxonomy, survey, and inter-
disciplinary challenges. ACM Computing Surveys,
52(6):1–36.
KMIS 2023 - 15th International Conference on Knowledge Management and Information Systems
240