Krajewski, R., Moers, T., Nerger, D., and Eckstein, L.
(2018). Data-driven maneuver modeling using gen-
erative adversarial networks and variational autoen-
coders for safety validation of highly automated ve-
hicles. In 2018 21st International Conference on In-
telligent Transportation Systems (ITSC), pages 2383–
2390. IEEE.
Mueller, A. S., Cicchino, J. B., and Zuby, D. S. (2020).
What humanlike errors do autonomous vehicles need
to avoid to maximize safety? Journal of Safety Re-
search, 75:310–318.
Musen, M. A. (2015). The prot
´
eg
´
e project: A look back and
a look forward. AI Matters, 1(4):4–12.
National Highway Traffic Safety Administration (2022).
Traffic safety facts 2020 data: Summary of motor ve-
hicle crashes. Report DOT HS 813 369, U.S. Depart-
ment of Transportation.
Noy, N. F. and McGuinness, D. L. (2001). Ontology de-
velopment 101: A guide to creating your first ontol-
ogy. Report KSL-01-05 and SMI-2001-0880, Stan-
ford knowledge systems laboratory.
Obrst, L., Ceusters, W., Mani, I., Ray, S., and Smith, B.
(2007). The evaluation of ontologies. In Baker,
C. J. O. and Cheung, K.-H., editors, Semantic Web:
Revolutionizing Knowledge Discovery in the Life Sci-
ences, pages 139–158. Springer US, Boston, MA.
O’Mahony, N., Campbell, S., Krpalkova, L., Riordan,
D., Walsh, J., Murphy, A., and Ryan, C. (2018).
Computer vision for 3d perception. In Arai, K., ,
Kapoor, S., , and Bhatia, R., editors, Intelligent Sys-
tems and Applications, IntelliSys 2018, pages 788–
804. Springer International Publishing.
Paull, L., Severac, G., Raffo, G. V., Angel, J. M., Boley,
H., Durst, P. J., Gray, W., Habib, M., Nguyen, B., Ra-
gavan, S. V., et al. (2012). Towards an ontology for
autonomous robots. In 2012 IEEE/RSJ International
Conference on Intelligent Robots and Systems, pages
1359–1364.
Pendleton, S. D., Andersen, H., Du, X., Shen, X., Megh-
jani, M., Eng, Y. H., Rus, D., and Ang, M. H. (2017).
Perception, planning, control, and coordination for au-
tonomous vehicles. Machines, 5(1):6.
Regele, R. (2008). Using ontology-based traffic models for
more efficient decision making of autonomous vehi-
cles. In Fourth International Conference on Auto-
nomic and Autonomous Systems (ICAS’08), pages 94–
99.
Riedmaier, S., Ponn, T., Ludwig, D., Schick, B., and Dier-
meyer, F. (2020). Survey on scenario-based safety
assessment of automated vehicles. IEEE Access,
8:87456–87477.
Schlenoff, C., Balakirsky, S., Uschold, M., Provine, R.
O. N., and Smith, S. (2003). Using ontologies to
aid navigation planning in autonomous vehicles. The
Knowledge Engineering Review, 18(3):243–255.
Sirin, E., Parsia, B., Grau, B. C., Kalyanpur, A., and Katz,
Y. (2007). Pellet: A practical owl-dl reasoner. Journal
of Web Semantics, 5(2):51–53. Elsevier - Software
Engineering and the Semantic Web.
Syzdykbayev, M., Hajari, H., and Karimi, H. A. (2019).
An ontology for collaborative navigation among au-
tonomous cars, drivers, and pedestrians in smart cities.
In 2019 4th International Conference on Smart and
Sustainable Technologies (SpliTech), pages 1–6.
Yu, S. and Liu, Z. (2021). The ionospheric condition and
gps positioning performance during the 2013 tropical
cyclone usagi event in the hong kong region. Earth,
Planets and Space, 73(1):66.
Zhao, L., Ichise, R., Mita, S., and Sasaki, Y. (2015a).
Core ontologies for safe autonomous driving. In 14th
International Semantic Web Conference (Posters &
Demonstrations).
Zhao, L., Ichise, R., Sasaki, Y., Liu, Z., and Yoshikawa, T.
(2016). Fast decision making using ontology-based
knowledge base. In 2016 IEEE Intelligent Vehicles
Symposium (IV), pages 173–178.
Zhao, L., Ichise, R., Yoshikawa, T., Naito, T., Kakinami,
T., and Sasaki, Y. (2015b). Ontology-based deci-
sion making on uncontrolled intersections and narrow
roads. In 2015 IEEE Intelligent Vehicles Symposium
(IV), pages 83–88.
Zhou, J. and del Re, L. (2017). Identification of critical
cases of adas safety by fot based parameterization of
a catalogue. In 2017 11th Asian Control Conference
(ASCC), pages 453–458. IEEE.
Towards Developing an Ontology for Safety of Navigation Sensors in Autonomous Vehicles
239