Notes in Bioinformatics), 12252 LNCS. https://doi.org/
10.1007/978-3-030-58811-3_5
Chung, J., & Teo, J. (2023). Single classifier vs. ensemble
machine learning approaches for mental health
prediction. Brain Informatics, 10(1). https://doi.org/
10.1186/s40708-022-00180-6
Dong, Y., & Peng, C. Y. J. (2013). Principled missing data
methods for researchers. In SpringerPlus (Vol. 2, Issue
1). https://doi.org/10.1186/2193-1801-2-222
Felman, A. (2018). Everything you need to know about
heart disease. Medical News Today.
Fouad, K. M., Ismail, M. M., Azar, A. T., & Arafa, M. M.
(2021). Advanced methods for missing values
imputation based on similarity learning. PeerJ
Computer Science, 7, e619. https://doi.org/10.7717/
peerj-cs.619
Fraenkel, J., & Grofman, B. (2014). The Borda Count and
its real-world alternatives: Comparing scoring rules in
Nauru and Slovenia. Australian Journal of Political
Science, 49(2). https://doi.org/10.1080/10361146.20
14.900530
Guo, G., Wang, H., Bell, D. A., Bi, Y., Bell, D., & Greer,
K. (2004). KNN Model-Based Approach in
Classification. https://www.researchgate.net/publicati
on/2948052
Huang, J., & Ling, C. X. (2005). Using AUC and accuracy
in evaluating learning algorithms. IEEE Transactions
on Knowledge and Data Engineering, 17(3).
https://doi.org/10.1109/TKDE.2005.50
Ibrahim, J. G., Chu, H., & Chen, M. H. (2012). Missing data
in clinical studies: Issues and methods. In Journal of
Clinical Oncology (Vol. 30, Issue 26).
https://doi.org/10.1200/JCO.20 11.38.7589
Idri, A., Abnane, I., & Abran, A. (2016). Missing data
techniques in analogy-based software development
effort estimation. Journal of Systems and Software, 117.
https://doi.org/10.1016/j.jss.2 016.04.058
Imandoust, S. B., & Bolandraftar, M. (2013). Application
of K-Nearest Neighbor ( KNN ) Approach for
Predicting Economic Events : Theoretical Background.
Int. Journal of Engineering Research and Applications,
3(5).
Jafarzadeh, H., Mahdianpari, M., Gill, E.,
Mohammadimanesh, F., & Homayouni, S. (2021).
Bagging and boosting ensemble classifiers for
classification of multispectral, hyperspectral and
polSAR data: A comparative evaluation. Remote
Sensing, 13(21). https://doi.org/10.3390/rs13214 405
Kafadar, K., & Sheskin, D. J. (1997). Handbook of
Parametric and Nonparametric Statistical Procedures.
The American Statistician,
51(4). https://doi.org/10.23
07/2685909
Ponikowski, P., Anker, S. D., AlHabib, K. F., Cowie, M. R.,
Force, T. L., Hu, S., Jaarsma, T., Krum, H., Rastogi, V.,
Rohde, L. E., Samal, U. C., Shimokawa, H., Budi
Siswanto, B., Sliwa, K., & Filippatos, G. (2014). Heart
failure: preventing disease and death worldwide. In
ESC Heart Failure (Vol. 1, Issue 1).
https://doi.org/10.10 02/ehf2.12005
Sharma, T., & Shah, M. (2021). A comprehensive review
of machine learning techniques on diabetes detection.
In Visual Computing for Industry, Biomedicine, and Art
(Vol. 4, Issue 1). https://doi.org/10.1186/s42492-021-
00097-7
Shorewala, V. (2021). Early detection of coronary heart
disease using ensemble techniques. Informatics in
Medicine Unlocked, 26. https://doi.org/10.1016/j.imu.
2021.100655
Wrathall, J. A., & Belnap, T. (2017). Reducing Healthcare
Costs Through Patient Targeting: Risk Adjustment
Modeling to Predict Patients Remaining High-Cost.
EGEMs (Generating Evidence & Methods to Improve
Patient Outcomes), 5(2). https://doi.org/10.13063/23
27-9214.1279
Zhang, S. (2012). Nearest neighbor selection for iteratively
kNN imputation. Journal of Systems and Software,
85(11). https://doi.org/10.1016/ j.jss.2012.05.073