Network and Efficient Feature Engineering. Wireless
Comm and Mobile Comp. https://doi.org/10.1155/
2020/6689134
Ding, P., Li, J., Wen, M., Wang, L., & Li, H. (2020).
Efficient BiSRU combined with feature dimensionality
reduction for abnormal traffic detection. IEEE Access,
8. https://doi.org/10.1109/ACCESS.2020.3022355
Duque, S., & Omar, M. N. Bin. (2015). Using Data Mining
Algorithms for Developing a Model for Intrusion
Detection System (IDS). Procedia Computer Science,
61. https://doi.org/10.1016/j.procs.2015.09.145
Elrawy, M. F., Awad, A. I., & Hamed, H. F. A. (2018).
Intrusion detection systems for IoT-based smart
environments: a survey. Journal of Cloud Computing,
7(1). https://doi.org/10.1186/s13677-018-0123-6
Farnaaz, N., & Jabbar, M. A. (2016). Random Forest
Modeling for Network Intrusion Detection System.
Procedia Computer Science, 89. https://doi.org/
10.1016/j.procs.2016.06.047
Fatani, A., Dahou, A., Al-qaness, M. A. A., Lu, S., & Abd
Elaziz, M. A. (2022). Advanced Feature Extraction and
Selection Approach Using Deep Learning and Aquila
Optimizer for IoT Intrusion Detection System. Sensors,
22(1). https://doi.org/10.3390/S22010140
Fraile, F., Tagawa, T., Poler, R., & Ortiz, A. (2018).
Trustworthy Industrial IoT Gateways for
Interoperability Platforms and Ecosystems. IEEE
Internet of Things Journal, 5(6). https://doi.org/
10.1109/JIOT.2018.2832041
Gad, A. R., Nashat, A. A., & Barkat, T. M. (2021). Intrusion
Detection System Using Machine Learning for
Vehicular Ad Hoc Networks Based on ToN-IoT
Dataset. IEEE Access, 9. https://doi.org/10.1109/
ACCESS.2021.3120626
Gao, X., Hu, C., Shan, C., Liu, B., Niu, Z., & Xie, H.
(2020). Malware classification for the cloud via semi-
supervised transfer learning. Journal of Information
Security and Applications, 55. https://doi.org/10.1016/
j.jisa.2020.102661
Ghanem, W. A. H. M., Jantan, A., Ghaleb, S. A. A., &
Nasser, A. B. (2020). An Efficient Intrusion Detection
Model Based on Hybridization of Artificial Bee Colony
and Dragonfly Algorithms for Training Multilayer
Perceptrons. IEEE Access, 8. https://doi.org/10.1109/
ACCESS.2020.3009533
Ghubaish, A., Salman, T., Zolanvari, M., Unal, D., Al-Ali,
A., & Jain, R. (2021). Recent Advances in the Internet-
of-Medical-Things (IoMT) Systems Security. IEEE
Internet of Things Journal, 8(11). https://doi.org/
10.1109/JIOT.2020.3045653
Hindy, H., Bayne, E., Bures, M., Atkinson, R., Tachtatzis,
C., & Bellekens, X. (2021). Machine Learning Based
IoT Intrusion Detection System: An MQTT Case Study
(MQTT-IoT-IDS2020 Dataset). Lecture Notes in
Networks and Systems, 180. https://doi.org/10.1007/
978-3-030-64758-2_6
Houda, Z. A. El, Brik, B., & Khoukhi, L. (2022). “Why
Should I Trust Your IDS?”: An Explainable Deep
Learning Framework for Intrusion Detection Systems
in Internet of Things Networks. IEEE Open Journal of
the Communications Society, 3. https://doi.org/
10.1109/OJCOMS.2022.3188750
Huma, Z. E., Latif, S., Ahmad, J., Idrees, Z., Ibrar, A., Zou,
Z., Alqahtani, F., & Baothman, F. (2021). A Hybrid
Deep Random Neural Network for Cyberattack
Detection in the Industrial Internet of Things. IEEE
Access, 9. https://doi.org/10.1109/ACCESS.
2021.3071766
IoT-23 (2020). https://www.kaggle.com/datasets/ engraq
eel/iot23preprocesseddata
Imrana, Y., Xiang, Y., Ali, L., & Abdul-Rauf, Z. (2021). A
bidirectional LSTM deep learning approach for
intrusion detection. Expert Systems with Applications,
185. https://doi.org/10.1016/j.eswa.2021.115524
ISCXIDS (2012). https://www.unb.ca/cic/datasets/nsl.html
Jabbar, M. A., Aluvalu, R., & Reddy, S. S. (2017).
RFAODE: A Novel Ensemble Intrusion Detection
System. Procedia Computer Science, 115, 226–234.
https://doi.org/10.1016/j.procs.2017.09.129
Jan, S. U., Ahmed, S., Shakhov, V., & Koo, I. (2019).
Toward a Lightweight Intrusion Detection System for
the Internet of Things. IEEE Access, 7. https://doi.org/
10.1109/ACCESS.2019.2907965
Jiang, H., He, Z., Ye, G., & Zhang, H. (2020). Network
Intrusion Detection Based on PSO-Xgboost Model.
IEEE Access, 8. https://doi.org/10.1109/
ACCESS.2020.2982418
Kaluarachchi, T., Reis, A., & Nanayakkara, S. (2021). A
review of recent deep learning approaches in human-
centered machine learning. Sensors, 21(7).
https://doi.org/10.3390/s21072514
Kasongo, S. M. (2021). An advanced intrusion detection
system for IIoT Based on GA and tree based algorithms.
IEEE Access, 9. https://doi.org/10.1109/
ACCESS.2021.3104113
Kasongo, S. M., & Sun, Y. (2019). A deep learning method
with filter based feature engineering for wireless
intrusion detection system. IEEE Access, 7.
https://doi.org/10.1109/ACCESS.2019.2905633
Khan, M. A. M. A., Khan, M. A. M. A., Jan, S. U., Ahmad,
J., Jamal, S. S., Shah, A. A., Pitropakis, N., &
Buchanan, W. J. (2021). A deep learning-based
intrusion detection system for mqtt enabled iot.
Sensors, 21(21). https://doi.org/10.3390/s21217016
Kirsch, J. H. and D. (2018). Machine Learning For
Dummies®, IBM Limited Edition Published. In
Journal of the American Society for Information
Science, 35, 5. https://doi.org/10.1002/asi.4630350509
Kumar, P., Gupta, G. P., & Tripathi, R. (2021). Toward
Design of an Intelligent Cyber Attack Detection System
using Hybrid Feature Reduced Approach for IoT
Networks. Arab Journal for Science and Eng, 46(4).
https://doi.org/10.1007/S13369-020-05181-3
Kyoto (2006), https://www.impactcybertrust.org/
dataset_view?idDataset=918
Latif, S., Huma, Z. e, Jamal, S. S., Ahmed, F., Ahmad, J.,
Zahid, A., Dashtipour, K., Umar Aftab, M., Ahmad, M.,
& Abbasi, Q. H. (2021). Intrusion Detection
Framework for the Internet of Things using a Dense