REFERENCES
Amari, S.-i. (1977). Dynamics of pattern formation in
lateral-inhibition type neural fields. Biological cyber-
netics, 27(2):77–87.
Anderson, J. R., Bothell, D., Byrne, M. D., Douglass, S.,
Lebiere, C., and Qin, Y. (2004). An integrated theory
of the mind. Psychological review, 111(4):1036.
Benavoli, A., Corani, G., Dem
ˇ
sar, J., and Zaffalon, M.
(2017). Time for a change: a tutorial for comparing
multiple classifiers through bayesian analysis. Journal
of Machine Learning Research, 18(77):1–36.
Bicho, E., Erlhagen, W., Louro, L., and e Silva, E. C.
(2011). Neuro-cognitive mechanisms of decision
making in joint action: A human–robot interaction
study. Human movement science, 30(5):846–868.
Chao, C. and Thomaz, A. L. (2011). Timing in multimodal
turn-taking interactions: Control and analysis using
timed petri nets. Journal of Human-Robot Interaction,
1(1):1–16.
Churamani, N., Barros, P., Gunes, H., and Wermter, S.
(2022). Affect-driven learning of robot behaviour for
collaborative human-robot interactions. Frontiers in
Robotics and AI, page 20.
Devin, S. and Alami, R. (2016). An implemented theory of
mind to improve human-robot shared plans execution.
In 2016 11th ACM/IEEE International Conference on
Human-Robot Interaction (HRI), pages 319–326.
Devin, S., Vrignaud, C., Belhassein, K., Clodic, A., Car-
reras, O., and Alami, R. (2018). Evaluating the perti-
nence of robot decisions in a human-robot joint action
context: The perdita questionnaire. In 2018 27th IEEE
International Symposium on Robot and Human Inter-
active Communication (RO-MAN), pages 144–151.
Fan, X., Sun, S., and Yen, J. (2005). On shared situa-
tion awareness for supporting human decision-making
teams. In AAAI Spring Symposium: AI Technologies
for Homeland Security, pages 17–24.
Kumar, S. and Sahin, F. (2017). A framework for an
adaptive human-robot collaboration approach through
perception-based real-time adjustments of robot be-
havior in industry. In 2017 12th System of Systems
Engineering Conference (SoSE), pages 1–6.
Laird, J. E. (2012). The Soar cognitive architecture. MIT
press, Cambridge, Massachusetts.
Lohse, M. (2011). The role of expectations and situations
in human-robot interaction. New Frontiers in Human-
Robot Interaction, pages 35–56.
Mitsunaga, N., Smith, C., Kanda, T., Ishiguro, H., and
Hagita, N. (2008). Adapting robot behavior for
human–robot interaction. IEEE Transactions on
Robotics, 24(4):911–916.
Moratz, R. and Tenbrink, T. (2008). Affordance-based
human-robot interaction. In Towards Affordance-
Based Robot Control, pages 63–76. Springer.
Nikolaidis, S., Hsu, D., and Srinivasa, S. (2017). Human-
robot mutual adaptation in collaborative tasks: Mod-
els and experiments. The International Journal of
Robotics Research, 36(5-7):618–634.
Ong, S. C., Png, S. W., Hsu, D., and Lee, W. S. (2010).
Planning under uncertainty for robotic tasks with
mixed observability. The International Journal of
Robotics Research, 29(8):1053–1068.
Sandamirskaya, Y. and Sch
¨
oner, G. (2010). An embodied
account of serial order: How instabilities drive se-
quence generation. Neural Networks, 23(10):1164–
1179.
Sch
¨
oner, G. (2008). Dynamical systems approaches to cog-
nition. In Sun, R., editor, The Cambridge Handbook
of Computational Psychology, pages 101–126. Cam-
bridge University Press.
Sobhani, M., Giuliani, M., Smith, J., Pipe, A., and Peer, A.
(2023a). Evaluating a decision-making architecture in
human-robot collaboration experiments. International
Journal of Social Robotics. (under revision).
Sobhani, M., Smith, J., Pipe, A., and Peer, A. (2023b).
A novel mirror neuron inspired decision-making ar-
chitecture for human-robot interaction. International
Journal of Social Robotics.
Trafton, J. G., Cassimatis, N. L., Bugajska, M. D.,
Brock, D. P., Mintz, F. E., and Schultz, A. C.
(2005). Enabling effective human-robot interaction
using perspective-taking in robots. IEEE Transactions
on Systems, Man, and Cybernetics-Part A: Systems
and Humans, 35(4):460–470.
Truc, J., Singamaneni, P.-T., Sidobre, D., Ivaldi, S., and
Alami, R. (2022). Khaos: a kinematic human aware
optimization-based system for reactive planning of
flying-coworker. In 2022 International Conference on
Robotics and Automation (ICRA), pages 4764–4770.
Van Zoelen, E. M., Barakova, E. I., and Rauterberg, M.
(2020). Adaptive leader-follower behavior in human-
robot collaboration. In 2020 29th IEEE International
Conference on Robot and Human Interactive Commu-
nication (RO-MAN), pages 1259–1265. IEEE.
Yamazaki, A., Yamazaki, K., Kuno, Y., Burdelski, M.,
Kawashima, M., and Kuzuoka, H. (2008). Precision
timing in human-robot interaction: coordination of
head movement and utterance. In Proceedings of the
SIGCHI Conference on Human Factors in Computing
Systems, pages 131–140. ACM.
ICINCO 2023 - 20th International Conference on Informatics in Control, Automation and Robotics
726