Hogg, L. M. J. and Jennings, N. R. (2001). Socially In-
telligent Reasoning for Autonomous Agents. IEEE
Transactions on Systems, Man, and Cybernetics - Part
A: Systems and Humans, 31(5):381–393.
Jackson, J. C., Rand, D., Lewis, K., Norton, M. I., and Gray,
K. (2017). Agent-Based Modeling. Social Psycholog-
ical and Personality Science, 8(4):387–395.
Jeffrey Pennington, Richard Socher, and Christopher D.
Manning (2014). GloVe: Global Vectors for Word
Representation. In Empirical Methods in Natural Lan-
guage Processing (EMNLP), pages 1532–1543.
Jeong, S., Baek, J., Park, C., and Park, J. C. (2021). Un-
supervised document expansion for information re-
trieval with stochastic text generation.
Lee, J., Yoon, W., Kim, S., Kim, D., Kim, S., So,
C. H., and Kang, J. (2020). BioBERT: a pre-
trained biomedical language representation model for
biomedical text mining. Bioinformatics (Oxford, Eng-
land), 36(4):1234–1240.
Mahmud, S. M. H., Rabbi, M. F., and Guy-Fernand, K. N.
(2016). An Agent-based Meta-Search Engine Archi-
tecture for Open Government Datasets Search. Com-
munications on Applied Electronics, 4(7):21–25.
Mikolov, T., Chen, K., Corrado, G., and Dean, J. (2013). Ef-
ficient Estimation of Word Representations in Vector
Space. International Conference on Learning Repre-
sentations.
Nagel, L. and Lycklama, D. (2021). Design Principles for
Data Spaces: Position Paper.
Nandan Thakur, Nils Reimers, Andreas Rücklé, Abhishek
Srivastava, and Iryna Gurevych (2021). BEIR: A Het-
erogeneous Benchmark for Zero-shot Evaluation of
Information Retrieval Models. In Thirty-fifth Con-
ference on Neural Information Processing Systems
Datasets and Benchmarks Track (Round 2).
Nannicini, G. (2021). On the implementation of a global op-
timization method for mixed-variable problems. Open
Journal of Mathematical Optimization, 2:1–25.
Nogueira, R., Lin, J., and Epistemic, A. (2019). From
doc2query to doctttttquery. Online preprint, 6:2.
Onal, K. D., Zhang, Y., Altingovde, I. S., Rahman, M. M.,
Karagoz, P., Braylan, A., Dang, B., Chang, H.-L.,
Kim, H., McNamara, Q., Angert, A., Banner, E.,
Khetan, V., McDonnell, T., Nguyen, A. T., Xu, D.,
Wallace, B. C., de Rijke, M., and Lease, M. (2018).
Neural information retrieval: at the end of the early
years. Information Retrieval, 21(2-3):111–182.
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V.,
Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P.,
Weiss, R., Dubourg, V., Vanderplas, J., Passos, A.,
Cournapeau, D., Brucher, M., Perrot, M., and Duch-
esnay, E. (2011). Scikit-learn: Machine Learning
in Python. Journal of Machine Learning Research,
12:2825–2830.
Reimers, N. and Gurevych, I. (2019). Sentence-BERT: Sen-
tence Embeddings using Siamese BERT-Networks.
In Proceedings of the 2019 Conference on Empiri-
cal Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 3982–
3992, Hong Kong, China. Association for Computa-
tional Linguistics.
Robertson, S. and Zaragoza, H. (2009). The Proba-
bilistic Relevance Framework: BM25 and Beyond.
Foundations and Trends® in Information Retrieval,
3(4):333–389.
S. Oliveira, M. I., Barros Lima, G. d. F., and Farias Lós-
cio, B. (2019). Investigations into Data Ecosystems: a
systematic mapping study. Knowledge and informa-
tion systems, pages 1–42.
Strauß, O., Kutzias, D., and Kett, H. (2022). Agent-Based
Document Expansion for Information Retrieval Based
on Topic Modeling of Local Information. In 2022 9th
International Conference on Soft Computing & Ma-
chine Intelligence (ISCMI), pages 198–202. IEEE.
Wang, W., Wei, F., Dong, L., Bao, H., Yang, N., and Zhou,
M. (2020). MiniLM: Deep Self-Attention Distillation
for Task-Agnostic Compression of Pre-Trained Trans-
formers. arXiv.
Xue, B. and Yan, G.-l. (2012). Research on multi-agents
information retrieval system based on intelligent evo-
lution. In Proceedings of 2012 2nd International Con-
ference on Computer Science and Network Technol-
ogy (ICCSNT 2012), pages 1042–1045, Piscataway,
NJ. IEEE.
Documents as Intelligent Agents: An Approach to Optimize Document Representations in Semantic Search
175