Modeling : A Survey of Critical Infrastructure
Interdependency Modeling : A. Contract, August.
Dudenhoeffer, D.D., Permann, M.R., and Manic, M. CIMS:
A framework for infrastructure interdependency
modeling and analysis. in Proceedings of the 38th
conference on Winter simulation. 2006. Winter
Simulation Conference.
Eusgeld, I., Nan, C., & Dietz, S. (2011). System-of-systems
approach for interdependent critical infrastructures.
Reliability Engineering and System Safety, 96(6).
https://doi.org/10.1016/j.ress.2010.12.010
Galbusera, L., Trucco, P., & Giannopoulos, G. (2020).
Modeling interdependencies in multi-sectoral critical
infrastructure systems: Evolving the DMCI approach.
Reliability Engineering and System Safety, 203.
https://doi.org/10.1016/j.ress.2020.107072
Goyal, A., Lu, W., & Lakshmanan, L. V. S. (2011).
CELF++: Optimizing the greedy algorithm for
influence maximization in social networks.
Proceedings of the 20th International Conference
Companion on World Wide Web, WWW 2011.
https://doi.org/10.1145/1963192.1963217
Goyal, A., Lu, W., and Lakshmanan, L.V. Simpath: An
efficient algorithm for influence maximization under
the linear threshold model. in Data Mining (ICDM),
2011 IEEE 11th International Conference on. 2011.
IEEE.
Heracleous, C., Kolios, P., Panayiotou, C. G., Ellinas, G.,
& Polycarpou, M. M. (2017). Hybrid systems modeling
for critical infrastructures interdependency analysis.
Reliability Engineering and System Safety, 165.
https://doi.org/10.1016/j.ress.2017.03.028
Islam, M. Z., Lin, Y., Vokkarane, V. M., &
Venkataramanan, V. (2023). Cyber-physical cascading
failure and resilience of power grid: A comprehensive
review. In Frontiers in Energy Research (Vol. 11).
https://doi.org/10.3389/fenrg.2023.1095303
Jiwei, L., Kang, T., Kong, R. T. L., & Soon, S. M. (2019).
Modelling critical infrastructure network
interdependencies and failure. International Journal of
Critical Infrastructures, 15(1). https://doi.org/10.1504/
IJCIS.2019.096557
Johansson, J., & Hassel, H. (2010). An approach for
modelling interdependent infrastructures in the context
of vulnerability analysis. Reliability Engineering and
System Safety, 95(12): 1335-1344. https://doi.org/
10.1016/j.ress.2010.06.010
Kempe, D., Kleinberg, J., and Tardos, É. Maximizing the
spread of influence through a social network. in
Proceedings of the ninth ACM SIGKDD international
conference on Knowledge discovery and data mining.
2003. ACM.
Kim, S., Kandampully, J., & Bilgihan, A. (2018). The
influence of eWOM communications: An application
of online social network framework. Computers in
Human Behavior, 80. https://doi.org/10.1016/j.chb.20
17.11.015
Lee II, E.E., Mitchell, J.E., and Wallace, W.A., Restoration
of services in interdependent infrastructure systems: A
network flows approach. IEEE Transactions on
Systems, Man, and Cybernetics, Part C (Applications
and Reviews), 2007. 37(6): p. 1303-1317.
Lee, E. K., & Wang, Z. (2017). A computational framework
for influence networks: Application to clergy influence
in HIV/AIDS outreach. Proceedings of the 2017
IEEE/ACM International Conference on Advances in
Social Networks Analysis and Mining, ASONAM
2017. https://doi.org/10.1145/3110025.3125430
Leskovec, J., Backstrom, L., and Kleinberg, J. Meme-
tracking and the dynamics of the news cycle. in
Proceedings of the 15th ACM SIGKDD international
conference on Knowledge discovery and data mining.
2009. ACM.
Leskovec, J., Krause, A., Guestrin, C., Faloutsos, C.,
VanBriesen, J., and Glance, N. Cost-effective outbreak
detection in networks. in Proceedings of the 13th ACM
SIGKDD international conference on Knowledge
discovery and data mining. 2007. ACM.
Lin, J., & Pan, T.-C. (2022). Modelling of multi-sectoral
critical infrastructure interdependencies for
vulnerability analysis. Disaster Prevention and
Resilience, 1(1). https://doi.org/10.20517/dpr.2021.05
Nan, C., & Sansavini, G. (2017). A quantitative method for
assessing resilience of interdependent infrastructures.
Reliability Engineering and System Safety, 157.
https://doi.org/10.1016/j.ress.2016.08.013
National Infrastructure Protection Plan (NIPP)
Communications Sector-Specific Plan for 2015, D.o.H.
Security, Editor. 2015.
Nemhauser, G.L., Wolsey, L.A., and Fisher, M.L., An
analysis of approximations for maximizing submodular
set functions—I. Mathematical programming, 1978.
14(1): p. 265-294.
Ouyang, M. (2014). Review on modeling and simulation of
interdependent critical infrastructure systems. In
Reliability Engineering and System Safety (Vol. 121).
https://doi.org/10.1016/j.ress.2013.06.040
Ouyang, M., Review on modeling and simulation of
interdependent critical infrastructure systems.
Reliability Engineering & System Safety, 2014. 121: p.
43-60.
Palos-Sanchez, P. R., Saura, J. R., & Debasa, F. (2018). The
Influence of Social Networks on the Development of
Recruitment Actions that Favor User Interface Design
and Conversions in Mobile Applications Powered by
Linked Data. Mobile Information Systems, 2018.
https://doi.org/10.1155/2018/5047017
Peng, S., Zhou, Y., Cao, L., Yu, S., Niu, J., & Jia, W.
(2018). Influence analysis in social networks: A survey.
In Journal of Network and Computer Applications
(Vol. 106). https://doi.org/10.1016/j.jnca.2018.01.005
Ramachandran, V., Shoberg, T., Long, S., Corns, S., and
Carlo, H., Identifying Geographical Interdependency in
Critical Infrastructure Systems Using Open Source
Geospatial Data in Order to Model Restoration
Strategies in the Aftermath of a Large-Scale Disaster.
International Journal of Geospatial and Environmental
Research, 2015. 2(1): p. 4.
Reilly, A.C., Samuel, A., and Guikema, S.D., “Gaming the
System”: Decision Making by Interdependent Critical