REFERENCES
Ahad, A., Fayyaz, A., and Mehmood, T. (2002). Speech
recognition using multilayer perceptron. In IEEE
Students Conference, ISCON ’02. Proceedings., vol-
ume 1, pages 103–109 vol.1.
Akhter, M. T., Banerjee, P., Dhar, S., and Jana, N. D.
(2022). An analysis of performance evaluation met-
rics for voice conversion models. In 2022 IEEE 19th
India Council International Conference (INDICON),
pages 1–6.
Bakouri, M., Alsehaimi, M., Ismail, H. F., Alshareef, K.,
Ganoun, A., Alqahtani, A., and Alharbi, Y. (2022).
Steering a robotic wheelchair based on voice recog-
nition system using convolutional neural networks.
Electronics, 11(1).
Chang, O., Flokas, L., and Lipson, H. (2020). Principled
weight initialization for hypernetworks. International
Conference on Learning Representations.
Dan, Z., Zhao, Y., Bi, X., Wu, L., and Ji, Q. (2022). Multi-
task transformer with adaptive cross-entropy loss for
multi-dialect speech recognition. Entropy, 24(10).
Das, S. and Suganthan, P. N. (2011). Differential evolution:
A survey of the state-of-the-art. IEEE Transactions on
Evolutionary Computation, 15(1):4–31.
Elsken, T., Metzen, J. H., and Hutter, F. (2019). Neural
architecture search: A survey. Journal of Machine
Learning Research, 20(55):1–21.
Ghosh, A. and Jana, N. D. (2022). Artificial bee colony
optimization based optimal convolutional neural net-
work architecture design. 2022 IEEE 19th India
Council International Conference (INDICON), pages
1–7.
Ghosh, A., Jana, N. D., Mallik, S., and Zhao, Z. (2022).
Designing optimal convolutional neural network ar-
chitecture using differential evolution algorithm. Pat-
terns, 3(9):100567.
Guo, Y., Liu, Y., Oerlemans, A., Lao, S., Wu, S., and Lew,
M. S. (2016). Deep learning for visual understanding:
A review. Neurocomputing, 187:27–48.
Ioffe, S. and Szegedy, C. (2015). Batch normalization: Ac-
celerating deep network training by reducing internal
covariate shift. International conference on machine
learning, pages 448–456.
Katoch, S., Chauhan, S. S., and Kumar, V. (2021). A review
on genetic algorithm: past, present, and future. Multi-
media Tools and Applications, 80(5):8091–8126.
Kubanek, M., Bobulski, J., and Kulawik, J. (2019). A
method of speech coding for speech recognition using
a convolutional neural network.
Liu, Y., Sun, Y., Xue, B., Zhang, M., Yen, G. G., and Tan,
K. C. (2021). A survey on evolutionary neural ar-
chitecture search. IEEE Transactions on Neural Net-
works and Learning Systems, pages 1–21.
Maclaurin, D., Duvenaud, D., and Adams, R. P. (2015).
Gradient-based hyperparameter optimization through
reversible learning.
Masum, M., Shahriar, H., Haddad, H., Faruk, M. J., Valero,
M., Khan, M. A., Rahman, M. A., Adnan, M. I., Cuz-
zocrea, A., and Wu, F. (2021). Bayesian hyperpa-
rameter optimization for deep neural network-based
network intrusion detection. 2021 IEEE International
Conference on Big Data (Big Data).
Mazumder, A., Sen, A., and Sen, U. (2023). Bench-
marking metaheuristic-integrated quantum approxi-
mate optimisation algorithm against quantum anneal-
ing for quadratic unconstrained binary optimization
problems.
Naithani, K., Thakkar, V. M., and Semwal, A. (2018).
English language speech recognition using mfcc and
hmm. In 2018 International Conference on Research
in Intelligent and Computing in Engineering (RICE),
pages 1–7.
Nanavati, R., Shah, S., and Joshi, M. (2021). Black box
attack on speech commands classification model. In
2021 IEEE International Midwest Symposium on Cir-
cuits and Systems (MWSCAS), pages 109–111.
Oruh, J., Viriri, S., and Adegun, A. (2022). Long short-
term memory recurrent neural network for automatic
speech recognition. IEEE Access, 10:30069–30079.
Patra, A., Pandey, C., Palaniappan, K., and Sethy,
P. K. (2023). Convolutional neural network-enabling
speech command recognition. In Smys, S., Lafata,
P., Palanisamy, R., and Kamel, K. A., editors, Com-
puter Networks and Inventive Communication Tech-
nologies, pages 321–332, Singapore. Springer Nature
Singapore.
Paul, S. K. and Paul, R. R. (2021). Speech command recog-
nition system using deep recurrent neural networks. In
2021 5th International Conference on Electrical Engi-
neering and Information Communication Technology
(ICEEICT), pages 1–6.
Saravanan, P., Sri Ram, E., Jangiti, S., Ponmani, E., Ravi,
L., Subramaniyaswamy, V., Varadarajan, V., Kom-
mers, P., Piuri, V., and Subramaniyaswamy, V. (2020).
Ensemble gaussian mixture model-based special voice
command cognitive computing intelligent system. J.
Intell. Fuzzy Syst., 39(6):8181–8189.
Sen, A., Gupta, V., and Tang, C. (2023a). Differential evo-
lution algorithm based hyperparameter selection of
gated recurrent unit for electrical load forecasting.
Sen, A., Mazumder, A. R., Dutta, D., Sen, U., Syam,
P., and Dhar, S. (2023b). Comparative evaluation
of metaheuristic algorithms for hyperparameter selec-
tion in short-term weather forecasting. arXiv preprint
arXiv:2309.02600.
Sen, A., Mazumder, A. R., and Sen, U. (2023c). Differ-
ential evolution algorithm based hyper-parameters se-
lection of transformer neural network model for load
forecasting. arXiv preprint arXiv:2307.15299.
Sharan, R. V. and Moir, T. J. (2018). Acoustic event
recognition using cochleagram image and convolu-
tional neural networks. Applied Acoustics, 148.
Simonyan, K. and Zisserman, A. (2014). Very deep con-
volutional networks for large-scale image recognition.
CoRR, abs/1409.1556.
Sørensen, P. M., Epp, B., and May, T. (2020). A depthwise
separable convolutional neural network for keyword
spotting on an embedded system. EURASIP Journal
on Audio, Speech, and Music Processing, 2020(1):10.
Warden, P. (2018). Speech commands: A dataset
for limited-vocabulary speech recognition. ArXiv,
abs/1804.03209.
ECTA 2023 - 15th International Conference on Evolutionary Computation Theory and Applications
322