assertions based on the outcomes of their activities,
the activities’ objectives (i.e., research goals) and
information from citations, as well as linking
extracted entities with other knowledge bases across
the Web, such as Wikidata, for named entity mentions
and Open Citations for bibliographic information.
ACKNOWLEDGEMENTS
The authors would like to thank Marialena Kasapaki
and Panagiotis Leontaridis for their important
contributions to the training of the DL models.
REFERENCES
Augenstein, I., Das, M., Riedel, S., Vikraman, L., &
McCallum, A. (2017). SemEval 2017 Task 10:
ScienceIE - Extracting Keyphrases and Relations from
Scientific Publications. Proceedings of the 11th
International Workshop on Semantic Evaluation
(SemEval-2017), 546–555. https://doi.org/10.18653/
v1/S17-2091
Bornmann, L., Haunschild, R., & Mutz, R. (2021). Growth
rates of modern science: A latent piecewise growth
curve approach to model publication numbers from
established and new literature databases. Humanities
and Social Sciences Communications, 8(1), 224.
https://doi.org/10.1057/s41599-021-00903-w
Chalkidis, I., Androutsopoulos, I., & Michos, A. (2017).
Extracting contract elements. Proceedings of the 16th
Edition of the International Conference on Articial
Intelligence and Law, 19–28. https://doi.org/10.1145/
3086512.3086515
Chiu, J. P. C., & Nichols, E. (2016). Named Entity
Recognition with Bidirectional LSTM-CNNs.
Transactions of the Association for Computational
Linguistics, 4, 357–370. https://doi.org/10.1162/
tacl_a_00104
Constantopoulos, P., Hughes, L. M., Dallas, C., Pertsas, V.,
& Christodoulou, T. (2016). Contextualized Integration
of Digital Humanities Research: Using the NeMO
Ontology of Digital Humanities Methods. Digital
Humanities 2016, 161–163.
Dessì, D., Osborne, F., Reforgiato Recupero, D., Buscaldi,
D., Motta, E., & Sack, H. (2020). AI-KG: An
Automatically Generated Knowledge Graph of
Artificial Intelligence. In J. Z. Pan, V. Tamma, C.
d’Amato, K. Janowicz, B. Fu, A. Polleres, O.
Seneviratne, & L. Kagal (Eds.), The Semantic Web –
ISWC 2020 (Vol. 12507, pp. 127–143). Springer
International Publishing. https://doi.org/10.1007/978-
3-030-62466-8_9
Do, H. H. N., Chandrasekaran, M. K., Cho, P. S., & Kan,
M. Y. (2013). Extracting and matching authors and
affiliations in scholarly documents. Proceedings of the
13th ACM/IEEE-CS Joint Conference on Digital
Libraries - JCDL ’13, 219. https://doi.org/10.1145/
2467696.2467703
Dozat, T., & Manning, C. D. (2017). Deep Biaffine
Attention for Neural Dependency Parsing. Conference
Track Proceedings. 5th International Conference on
Learning Representations, ICLR, Toulon, France.
D’Souza, J., & Auer, S. (2022). Computer Science Named
Entity Recognition in the Open Research Knowledge
Graph. From Born-Physical to Born-Virtual:
Augmenting Intelligence in Digital Libraries, 13636.
https://doi.org/10.1007/978-3-031-21756-2_3
He, J., Uppal, A., N, M., Vignesh, S., Kumar, D., & Kumar
Sarda, A. (2022). Infrrd.ai at SemEval-2022 Task 11: A
system for named entity recognition using data
augmentation, transformer-based sequence labeling
model, and EnsembleCRF. Proceedings of the 16th
International Workshop on Semantic Evaluation
(SemEval-2022), 1501–1510. https://doi.org/10.18653/
v1/2022.semeval-1.206
Jain, S., Van Zuylen, M., Hajishirzi, H., & Beltagy, I.
(2020). SciREX: A Challenge Dataset for Document-
Level Information Extraction. Proceedings of the 58th
Annual Meeting of the Association for Computational
Linguistics, 7506–7516. https://doi.org/10.18653/v1/20
20.acl-main.670
Jaradeh, M. Y., Oelen, A., Farfar, K. E., Prinz, M.,
D’Souza, J., Kismihók, G., Stocker, M., & Auer, S.
(2019). Open Research Knowledge Graph: Next
Generation Infrastructure for Semantic Scholarly
Knowledge. Proceedings of the 10th International
Conference on Knowledge Capture, 243–246.
https://doi.org/10.1145/3360901.3364435
Lample, G., Ballesteros, M., Subramanian, S., Kawakami,
K., & Dyer, C. (2016). Neural Architectures for Named
Entity Recognition. Proceedings of the 2016
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, 260–270.
Li, Y., Yang, Y., Zhang, Y., & Xu, R. (2022). HITSZ-HLT
at SemEval-2022 Task 10: A Span-Relation Extraction
Framework for Structured Sentiment Analysis.
Proceedings of the 16th International Workshop on
Semantic Evaluation (SemEval-2022), 1406–1411.
https://doi.org/10.18653/v1/2022.semeval-1.195
Luan, Y., He, L., Ostendorf, M., & Hajishirzi, H. (2018).
Multi-Task Identification of Entities, Relations, and
Coreference for Scientific Knowledge Graph
Construction. Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing,
3219–3232. https://doi.org/10.18653/v1/D18-1360
Luan, Y., Ostendorf, M., & Hajishirzi, H. (2018). The
UWNLP system at SemEval-2018 Task 7: Neural
Relation Extraction Model with Selectively
Incorporated Concept Embeddings. Proceedings of The
12th International Workshop on Semantic Evaluation,
788–792. https://doi.org/10.18653/v1/S18-1125
Ma, X., & Hovy, E. (2016). End-to-end Sequence Labeling
via Bi-directional LSTM-CNNs-CRF. Proceedings of