Ahlfors, L. V. (2006). Lectures on quasiconformal
mappings (Vol. 38). American Mathematical Soc..
Boser, B. E., Guyon, I. M., & Vapnik, V. N. (1992, July).
A training algorithm for optimal margin classifiers. In
Proceedings of the fifth annual workshop on
Computational learning theory (pp. 144-152).
Cantarella, J., & Schumacher, H. (2022). Computing the
conformal barycenter. SIAM Journal on Applied
Algebra and Geometry, 6(3), 503-530.
Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn,
D., Zhai, X., Unterthiner, T., ... & Houlsby, N. (2020,
October). An Image is Worth 16x16 Words:
Transformers for Image Recognition at Scale. In
International Conference on Learning Representations.
Douady, A., & Earle, C. J. (1986). Conformally natural
extension of homeomorphisms of the circle.
Geurts, P., Ernst, D., & Wehenkel, L. (2006). Extremely
randomized trees. Machine learning, 63, 3-42.
He, K., Fan, H., Wu, Y., Xie, S., & Girshick, R. (2020).
Momentum contrast for unsupervised visual
representation learning. In Proceedings of the
IEEE/CVF conference on computer vision and pattern
recognition (pp. 9729-9738).
LeCun, Y., Boser, B., Denker, J. S., Henderson, D.,
Howard, R. E., Hubbard, W., & Jackel, L. D. (1989).
Backpropagation applied to handwritten zip code
recognition. Neural computation, 1(4), 541-551.
MicenkovΓ‘, B., McWilliams, B., & Assent, I. (2014,
August). Learning outlier ensembles: The best of both
worldsβsupervised and unsupervised. In Proceedings of
the ACM SIGKDD 2014 Workshop on Outlier
Detection and Description under Data Diversity
(ODD2). New York, NY, USA (pp. 51-54).
MicenkovΓ‘, B., McWilliams, B., & Assent, I. (2015).
Learning representations for outlier detection on a
budget. arXiv preprint arXiv:1507.08104.
Radford, A., Narasimhan, K., Salimans, T., & Sutskever, I.
(2018). Improving language understanding by
generative pre-training.
Roweis, S. T., & Saul, L. K. (2000). Nonlinear
dimensionality reduction by locally linear embedding.
science, 290(5500), 2323-2326.
Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1985).
Learning internal representations by error propagation.
Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986).
Learning representations by back-propagating errors.
nature, 323(6088), 533-536.
Shimauchi, H. (2021, March). Improving supervised outlier
detection by unsupervised representation learning and
generative adversarial networks: An extension of
extreme gradient boosting outlier detection by gans. In
Proceedings of the 4th International Conference on
Information Science and Systems (pp. 22-27).
Tukia, P., & VΓ€isΓ€lΓ€, J. (1980). Quasisymmetric
embeddings of metric spaces. Annales Fennici
Mathematici, 5(1), 97-114.
Tukia, P., & Vaisala, J. (1982). Quasiconformal extension
from dimension n to n+1. Annals of Mathematics,
115(2), 331-348.
VΓ€isΓ€lΓ€, J. (1999). The free quasiworld. Freely
quasiconformal and related maps in Banach spaces.
Banach Center Publications, 48(1), 55-118.
VΓ€isΓ€lΓ€, J. (2006). Lectures on n-dimensional
quasiconformal mappings (Vol. 229). Springer.
Vapnik, V. N. (1963). Pattern recognition using generalized
portrait method. Automation and remote control, 24(6),
774-780.
WickstrΓΈm, K., Kampffmeyer, M., Mikalsen, K. Γ., &
Jenssen, R. (2022). Mixing up contrastive learning:
Self-supervised representation learning for time series.
Pattern Recognition Letters, 155, 54-61.
Zhao, Y., & Hryniewicki, M. K. (2018, July). XGBOD:
improving supervised outlier detection with
unsupervised representation learning. In 2018
International Joint Conference on Neural Networks
(IJCNN) (pp. 1-8). IEEE.