on Semantic Systems (SEMANTiCS2016), pages 14–
17.
Erd
˝
os, P., R
´
enyi, A., et al. (1960). On the evolution of
random graphs. Publ. math. inst. hung. acad. sci,
5(1):17–60.
Erxleben, F., G
¨
unther, M., Kr
¨
otzsch, M., Mendez, J., and
Vrande
ˇ
ci
´
c, D. (2014). Introducing wikidata to the
linked data web. In Mika, P., Tudorache, T., Bern-
stein, A., Welty, C., Knoblock, C., Vrande
ˇ
ci
´
c, D.,
Groth, P., Noy, N., Janowicz, K., and Goble, C., ed-
itors, The Semantic Web – ISWC 2014, pages 50–65,
Cham. Springer International Publishing.
Faerber, M., Bartscherer, F., Menne, C., and Rettinger, A.
(2017). Linked data quality of dbpedia, freebase,
opencyc, wikidata, and yago. Semantic Web, 9:1–53.
Freeman, L. C. (1978). Centrality in social networks con-
ceptual clarification. Social Networks, 1:215–239.
Girvan, M. and Newman, M. E. (2002). Community struc-
ture in social and biological networks. Proceedings of
the national academy of sciences, 99(12):7821–7826.
Hogan, A., Blomqvist, E., Cochez, M., D’amato, C., Melo,
G. D., Gutierrez, C., Kirrane, S., Gayo, J. E. L., Nav-
igli, R., Neumaier, S., Ngomo, A.-C. N., Polleres, A.,
Rashid, S. M., Rula, A., Schmelzeisen, L., Sequeda,
J., Staab, S., and Zimmermann, A. (2021). Knowl-
edge graphs. ACM Comput. Surv., 54(4).
Ji, S., Pan, S., Cambria, E., Marttinen, P., and Yu, P. S.
(2022). A survey on knowledge graphs: Represen-
tation, acquisition, and applications. IEEE Trans-
actions on Neural Networks and Learning Systems,
33(2):494–514.
Kalloubi, F., Nfaoui, E. H., and Beqqali, O. E. (2016).
On using graph centrality measures for dbpedia-based
tweet entity linking. In 2016 International Conference
on Information Technology for Organizations Devel-
opment (IT4OD), pages 1–7.
Kleinberg, J. M. (1999). Authoritative sources in a hyper-
linked environment. J. ACM, 46(5):604–632.
Latapy, M. and Magnien, C. (2008). Complex network
measurements: Estimating the relevance of observed
properties. In IEEE INFOCOM 2008 - The 27th Con-
ference on Computer Communications, pages 1660–
1668.
L
¨
u, J., Wen, G., Lu, R., Wang, Y., and Zhang, S. (2022).
Networked knowledge and complex networks: An en-
gineering view. IEEE/CAA Journal of Automatica
Sinica, 9(8):1366–1383.
Magnanimi, D., Bellomarini, L., Ceri, S., and Marti-
nenghi, D. (2023). Reactive company control in com-
pany knowledge graphs. In 2023 IEEE 39th Inter-
national Conference on Data Engineering (ICDE),
pages 3336–3348.
Mantle, M., Batsakis, S., and Antoniou, G. (2019). Large
scale distributed spatio-temporal reasoning using real-
world knowledge graphs. Knowledge-Based Systems,
163:214–226.
Noy, N., Gao, Y., Jain, A., Narayanan, A., Patterson, A., and
Taylor, J. (2019). Industry-scale knowledge graphs:
Lessons and challenges: Five diverse technology com-
panies show how it’s done. Queue, 17(2):48–75.
Park, N., Kan, A., Dong, X. L., Zhao, T., and Faloutsos,
C. (2019). Estimating node importance in knowledge
graphs using graph neural networks. In Proceedings
of the 25th ACM SIGKDD International Conference
on Knowledge Discovery & Data Mining, KDD ’19,
page 596–606, New York, NY, USA. Association for
Computing Machinery.
Paulheim, H. (2017). Knowledge graph refinement: A sur-
vey of approaches and evaluation methods. Semantic
Web, 8:489–508.
Puspa Rinjeni, T., Suci Indasari, S., Indriawan, A., and
Aini Rakhmawati, N. (2022). Movies analysis on db-
pedia and wikidata using community detection and
centrality algorithms. In 2022 International Electron-
ics Symposium (IES), pages 380–386.
Rodrigues, F. A. (2019). Network Centrality: An Introduc-
tion, pages 177–196. Springer International Publish-
ing, Cham.
Rossanez, A., dos Reis, J. C., and da Silva Torres, R.
(2020). Representing scientific literature evolution
via temporal knowledge graphs. In 6th Managing the
Evolution and Preservation of the Data Web (MEP-
DaW) Workshop, International Semantic Web Confer-
ence (ISWC), pages 33–42.
Sadeghi, A., Collarana, D., Graux, D., and Lehmann, J.
(2021). Embedding knowledge graphs attentive to po-
sitional and centrality qualities. In Oliver, N., P
´
erez-
Cruz, F., Kramer, S., Read, J., and Lozano, J. A., ed-
itors, Machine Learning and Knowledge Discovery in
Databases. Research Track, pages 548–564, Cham.
Springer International Publishing.
Tilly, S. and Livan, G. (2021). Macroeconomic forecasting
with statistically validated knowledge graphs. Expert
Systems with Applications, 186:115765.
Watts, D. J. and Strogatz, S. H. (1998). Collective dynam-
ics of ‘small-world’networks. nature, 393(6684):440–
442.
Zou, X. (2020). A survey on application of knowl-
edge graph. Journal of Physics: Conference Series,
1487(1):012016.
KEOD 2023 - 15th International Conference on Knowledge Engineering and Ontology Development
128