Farley, D., Ozair, S., ... and Bengio, Y. (2014).
Generative Adversarial Nets. Advances in neural
information processing systems, 27.
Hähnel, M., Cui, W., and Peinado, M. (2017). High-
Resolution Side Channels for Untrusted Operating
Systems. In 2017 USENIX Annual Technical Conference
(USENIX ATC 17) (pp. 299-312).
Irazoqui, G., Inci, M. S., Eisenbarth, T., and Sunar, B. (2014).
Wait a minute! A fast, Cross-VM attack on AES. In
Research in Attacks, Intrusions and Defenses: 17th
International Symposium, RAID 2014, Gothenburg,
Sweden, September 17-19, 2014. Proceedings 17 (pp.
299-319). Springer International Publishing.
WEBIST-2023-Cache_Side_Channel (2023). https://github.
com/ssuhung/WEBIST-2023-Cache_Side_Channel
Kwon, D., Kim, H., and Hong, S. (2021). Non-profiled deep
learning-based side-channel preprocessing with
autoencoders. IEEE Access, 9, 57692-57703.
libjpeg-turbo (2010). https://github.com/libjpeg-turbo/
libjpeg-turbo. [Online; accessed 10-April-2023].
libwebp (2011). https://github.com/webmproject/libwebp.
[Online; accessed 20-August-2023].
Liu, F., Yarom, Y., Ge, Q., Heiser, G., and Lee, R. B. (2015,
May). Last-level cache side-channel attacks are practical.
In 2015 IEEE symposium on security and privacy (pp.
605-622). IEEE.
Liu, Z., Luo, P., Wang, X., and Tang, X. (2015). Deep
learning face attributes in the wild. In Proceedings of the
IEEE international conference on computer vision (pp.
3730-3738).
Luk, C. K., Cohn, R., Muth, R., Patil, H., Klauser, A.,
Lowney, G., Wallace, S., Reddi, V. J., and Hazelwood,
K. (2005). Pin: building customized program analysis
tools with dynamic instrumentation. ACM SIGPLAN
Notices, 40(6), 190-200.
Moghimi, D. (2023). Downfall: Exploiting Speculative Data
Gathering. In 32nd USENIX Security Symposium
(USENIX Security 23) (pp. 7179-7193).
Oren, Y., Kemerlis, V. P., Sethumadhavan, S., and
Keromytis, A. D. (2015). The spy in the sandbox:
Practical cache attacks in JavaScript and their
implications. In Proceedings of the 22nd ACM SIGSAC
Conference on Computer and Communications Security
(pp. 1406-1418).
Tromer, E., Osvik, D. A., and Shamir, A. (2010). Efficient
cache attacks on AES, and countermeasures. Journal of
Cryptology, 23(1), 37–71.
Van Den Oord, A., and Vinyals, O. (2017). Neural discrete
representation learning. Advances in neural information
processing systems, 30.
Wu, L., and Picek, S. (2020). Remove some noise: On pre-
processing of side-channel measurements with
autoencoders. IACR Transactions on Cryptographic
Hardware and Embedded Systems, 389-415.
Wang, Z., Bovik, A. C., Sheikh, H. R., and Simoncelli, E. P.
(2004). Image quality assessment: from error visibility to
structural similarity. IEEE transactions on image
processing, 13(4), 600-612.
Xu, Y., Cui, W., and Peinado, M. (2015). Controlled-channel
attacks: Deterministic side channels for untrusted
operating systems. In 2015 IEEE Symposium on Security
and Privacy
(pp. 640-656). IEEE.
Yuan, Y., Pang, Q., and Wang, S. (2022). Automated side
channel analysis of media software with manifold
learning. In 31st USENIX Security Symposium (USENIX
Security 22) (pp. 4419-4436).
Yuan, Y., Wang, S., and Zhang, J. (2021). Private image
reconstruction from system side channels using
generative models. In Ninth International Conference on
Learning Representations.
Zhan, Z., Zhang, Z., Liang, S., Yao, F., and Koutsoukos, X.
(2022). Graphics peeping unit: Exploiting EM side-
channel information of GPUs to eavesdrop on your
neighbors. In 2022 IEEE Symposium on Security and
Privacy (SP) (pp. 1440-1457). IEEE.
APPENDIX
More reconstruction results are presented here.