Communications Biology, Vol. 4, No. 1, pp. 1-13,
September 2021.
Antonelli, M., Bernardo, D., Hagras, H., Marcelloni, F.
(2017). Multi-Objective Evolutionary Optimization of
Type-2 Fuzzy Rule-based Systems for Financial Data
Classification. IEEE Transactions on Fuzzy Systems,
Vol. 25, No. 2, pp. 249-264, April 2017.
Bach, S., Binder, A., Montavon, G., Klauschen, F., Müller,
K., Samek, W (2015). On pixelwise explanations for
non-linear classifier decisions by layer-wise relevance
propagation, PLoS ONE, Vol. 10, No. 7, 2015.
Chavatte, L (2018). Artificial Intelligence in Europe
Report: At a glance. Microsoft Pulse. https://pulse.
microsoft.com/en/transform-en/na/fa1-articial-intellige
nce-report-at-a-glance/#:~:text=65%25%20is%20expe
cting%20AI%20to,key%20topic%20for%20executive
%20management.
Gunning, D, (2017). Explainable Artificial Intelligence.
http://www. darpa.mil/program/explainable-articial-
intelligence, 2017.
Hagras, H. (2018). Towards Human Understandable
Explainable AI”, IEEE Computers, Vol.51, No.9, pp.
28-26, September 2018.
Haxby, J. V., Connolly, A. C. & Guntupalli, J. S (2014).
Decoding neural representational spaces using
multivariate pattern analysis. Annual review of
neuroscience, Vol. 37, pp. 435-456, 2014.
Kiani, M., Andreu-Perez, J., Hagras, H (2022). A Temporal
Type-2 Fuzzy System for Time-dependent Explainable
Artificial Intelligence, IEEE Transactions on Artificial
Intelligence, pp.1-15, September 2022.
Montavon, G., Samek, W., Müller,K. (2018) Methods for
interpreting and understanding deep neural networks.
Digital Signal Processing, Vol.73, pp.1-15, 2018.
Mendel, J., Hagras, H., Sola, H., Herrera, F. (2016)
Comments on: Interval Type-2 Fuzzy Sets are
generalization of Interval-Valued Fuzzy Sets: Towards
a Wider view on their relationship. IEEE Transactions
on Fuzzy Systems, Vol.24, No.1, pp.249-250, February
2016.
Nolan R. Altman, B. (2001). Brain Activation in Sedated
Children: Auditory and Visual Functional MR Imaging.
Pediatric Imaging, Vol.1 221, pp.56-63, 2001.
Press, G. (2019), AI And Automation 2019 Predictions
From Forrester, https://www.forbes.com/sites/gilpress/
2018/11/06/ai-and-automation-2019-predictions-from-
forrester/#d46ec454cb57.
Ribeiro, M., Singh, S., Guestrin, C. (2016a) why should i
trust you?: Explaining the predictions of any classifier.
Proceedings of the 2016 ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining
(KDD), 2016
Ribeiro, M., Singh, S., Guestrin, C. (2016b) Nothing Else
Matters: Model-Agnostic Explanations By Identifying
Prediction Invariance. ArXiv e-prints, November 2016.
Ruiz, G., Hagras, H., Pomares, H., Rojas, I. (2019) Towards
a Fuzzy Logic System Based on General Forms of
Interval Type-2 Fuzzy Sets, IEEE Transactions on
Fuzzy Systems, Vol. 27, No.12, pp. 2381-2396,
February 2019.
Sanz, J., Bernardo, D., Herrera, F., Bustince, H., Hagras,
H., (2015). A Compact Evolutionary Interval-Valued
Fuzzy Rule-Based Classification System for the
Modeling and Prediction of Real-World Financial
Applications with Imbalanced Data. IEEE
Transactions on Fuzzy Systems, Vol.23m No.4, pp.973-
990, August 2015.
Sarabakha, A., Imanberdiyev, N., Kayacan, E., Khanesar,
M., Hagras, H. (2017). Novel Levenberg–Marquardt
based learning algorithm for unmanned aerial vehicles”
Journal of Information Sciences, Vo.417. pp. 361-380,
November 2017.
Sundararajan, M., Nahmi, A., 2019. The many Shapley
values for model explanation. Proceedings of Machine
Learning Research, Vol.119, pp. 9269-9278, 2019.
Upasane, S., Hagras, H., Anisi, M., Savill, S., Taylor,I.,
Manousakis, K. (2023). A Type-2 Fuzzy Based
Explainable AI System for Predictive Maintenance
within the Water Pumping Industry. IEEE Transactions
on Artificial Intelligence, May 2023.
Wolfe, J., Mikheeva, L., Hagras, H., Zabet, N.(2021). An
explainable artificial intelligence approach for
decoding the enhancer histone modifications code and
identification of novel enhancers in Drosophila,
Genome Biology, Vol. 22, No.1, pp.1-23, December
2021.