compared to other models. The precipitation formed
by evaporation in the Qinghai-Tibet Plateau region
accounts for 57.1% of the total precipitation, and the
precipitation recycling ratio of the plateau itself is
25.5%.
REFERENCES
An W, Hou S, Zhang Q, et al. Enhanced Recent Local
Moisture Recycling on the Northwestern Tibetan
Plateau Deduced From Ice Core Deuterium Excess
Records. Journal of Geophysical Research:
Atmospheres. 2017;122(23):12,541-12,556. https://doi.
org/10.1002 /2017JD027235
Cheng G, Zhao L, Li R, et al. Characteristic, changes and
impacts of permafrost on Qinghai-Tibet Plateau.
Chinese Science Bulletin. 2019; 64: 2783-2795.
https://doi.org/10.1360/TB-2019-0191
Chu Q cheng, Wang Q guang, Feng G lin. Determination
of the major moisture sources of cumulative effect of
torrential rain events during the preflood season over
South China using a Lagrangian particle model.
Journal of Geophysical Research: Atmospheres. 2017;
122(16): 8369-8382. https://doi.org/10.1002/2016JD0
26426
Curio J, Maussion F, Scherer D. A 12-year high-resolution
climatology of atmospheric water transport over the
Tibetan Plateau. Earth Syst Dynam. 2015;6(1):109-
124. https://doi.org/10.5194/esd-6-109-2015
Gao Y, Chen F, Miguez-Macho G, Li X. Understanding
precipitation recycling over the Tibetan Plateau using
tracer analysis with WRF. Climate Dynamics.
2020;55(9):2921-2937.
https://doi.org/10.1007/s00382-020-05426-9
Gao Y, Leung LR, Zhang Y, Cuo L. Changes in Moisture
Flux over the Tibetan Plateau during 1979–2011:
Insights from a High-Resolution Simulation. Journal
of Climate. 2015;28(10):4185-4197. https://doi.org/10.
1175/JCLI-D-14-00581.1
Gao Y, Xu J, Chen D. Evaluation of WRF Mesoscale
Climate Simulations over the Tibetan Plateau during
1979–2011. Journal of Climate. 2015;28(7):2823-
2841. https://doi.org/10.1175/JCLI-D-14-00300.1
Jones PD, Osborn TJ, Briffa KR. The Evolution of
Climate Over the Last Millennium. Science. 2001;
292(5517):662-667. https://doi.org/10.1126/science.10
59126
Keys PW, Barnes EA, van der Ent RJ, Gordon LJ.
Variability of moisture recycling using a precipitation
shed framework. Hydrol Earth Syst Sci.
2014;18(10):3937-3950. https://doi.org/10.5194/hess-
18-3937-2014
Kurita N, Yamada H. The Role of Local Moisture
Recycling Evaluated Using Stable Isotope Data from
over the Middle of the Tibetan Plateau during the
Monsoon Season. Journal of Hydrometeorology.
2008;9(4):760-775. https://doi.org/10.1175/2007JHM9
45.1
Kutzbach JE, Prell WL, Ruddiman WmF. Sensitivity of
Eurasian Climate to Surface Uplift of the Tibetan
Plateau. The Journal of Geology. 1993;101(2):177-
190. https://doi.org/10.1086/648215
Li Y, Su F, Chen D, Tang Q. Atmospheric Water Transport
to the Endorheic Tibetan Plateau and Its Effect on the
Hydrological Status in the Region. Journal of
Geophysical Research: Atmospheres. 2019;124(23):
12864-12881. https://doi.org/10.1029/2019JD031297
Lin C, Chen D, Yang K, Ou T. Impact of model resolution
on simulating the water vapor transport through the
central Himalayas: implication for models’ wet bias
over the Tibetan Plateau. Climate Dynamics. 2018;
51(9):3195-3207. https://doi.org/10.1007/s00382-018-
4074-x
Lorenz C, Kunstmann H. The Hydrological Cycle in Three
State-of-the-Art Reanalyses: Intercomparison and
Performance Analysis. Journal of Hydrometeorology.
2012;13(5):1397-1420. https://doi.org/10.1175/JHM-
D-11-088.1
Mann ME, Jones PD. Global surface temperatures over the
past two millennia. Geophysical Research Letters.
2003;30(15). https://doi.org/10.1029/2003GL017814
Nie Y, Sun J. Regional Persistent Extreme Precipitation
Events over Southwest China under Different Low-
Latitude Intraseasonal Oscillations during the Rainy
Season. Journal of Climate. 2023;36(9):2873-2894.
https://doi.org/10.1175/JCLI-D-22-0310.1
Pascolini-Campbell M, Reager JT, Chandanpurkar HA,
Rodell M. Retraction Note: A 10 per cent increase in
global land evapotranspiration from 2003 to 2019.
Nature. 2022; 604(7904): 202-202. https://doi.org/10.
1038/s41586-022-04525-3
Sodemann H, Schwierz C, Wernli H. Interannual
variability of Greenland winter precipitation sources:
Lagrangian moisture diagnostic and North Atlantic
Oscillation influence. Journal of Geophysical
Research: Atmospheres. 2008; 113(D3). https://doi.
org/10.1029/2007JD008503
Sun B, Wang H. Moisture Sources of Semiarid Grassland
in China Using the Lagrangian Particle Model
FLEXPART. Journal of Climate. 2014;27(6):2457-
2474. https://doi.org/10.1175/JCLI-D-13-00517.1
Trenberth K.E., Fasullo JT, Mackaro J. Atmospheric
Moisture Transports from Ocean to Land and Global
Energy Flows in Reanalyses. Journal of Climate.
2011;24(18):4907-4924. https://doi.org/10.1175/2011J
CLI4171.1
van der Ent R, Tuinenburg O. The Residence Time of
Water in the Atmosphere Revisited. In: EGU General
Assembly Conference Abstracts. EGU General
Assembly Conference Abstracts. 2017:4883. https://
doi.org/10.5194/hess-21-779-2017
van der Ent RJ van der. A new view on the hydrological
cycle over continents. 2014. https://doi.org/10.4
233/uuid:0ab824ee-6956-4cc3-b530-3245ab4f32be
van der Ent RJ, Savenije HHG, Schaefli B, Steele-Dunne
SC. Origin and fate of atmospheric moisture over
continents. Water Resources Research. 2010;46(9).
https://doi.org/10.1029/2010WR009127
ANIT 2023 - The International Seminar on Artificial Intelligence, Networking and Information Technology