Laser-plasma generation of terahertz radiation using a
frequency-tunable half harmonic of a femtosecond
pulse. Physical Review Letters, 2014, 112: 055004.
Atsushi Nakanishi, Shohei Hayashi, Hiroshi Satozono and
Kazuue Fujita. Spectroscopic Imaging with an Ultra-
Broadband (1–4 THz) Compact Terahertz Difference-
Frequency Generation Source. Electronics, 2021, 10,
336.
Nemec. H, Zajac. V, Kuzel. P, Maly. P, Gutsch. S, Hiller. D,
Zacharias. M, Charge transport in silicon nanocrystal
superlattices in the terahertz regime. Phys. Rev. B, 2015,
91:195443.
R.A. Motiyenko, B. Tercero, J. Cernicharo, L. Margul.
Rotational spectrum of formamide up to 1 THz and first
ISM detection of its vibrational state. Astronomy and
Astrophysics, 2012, 548:A71.
H. Tanoto, J.H. Teng, Q.Y. Wu, et al. Greatly enhanced
continuous-wave terahertz emission by nano-electrodes
in a photoconductive photomixer. Nature Photonics,
2012, 6: 121-126.
He Y, Wang Y, Xu D , et al. High-energy and ultra-wideband
tunable terahertz source with DAST crystal via
difference frequency generation. Applied Physics B,
2018, 124(1):16.
Liu P, Zhang X, Chao Y, et al. Widely tunable and
monochromatic terahertz difference frequency
generation with organic.crystal 2-(3-(4-hydroxystyryl)-
5, 5-dime-thylcyclohex-2-enylidene) malononitrile.
Applied Physics Letters, 2016, 108(1): 621-629.
Ravi K, Schimpf D N, Franz X. Kärtner. Pulse sequences
for efficient multi-cycle terahertz generation in
periodically poled lithium niobate. Optics Express,
2016, 24(22):25582.
F. Zernike, P. R. Berman. Generation of Far Infrared as a
Difference Frequency. Phys. Rev. Lett., 1965, 15(26):
999-1004
S.Y.Tochitsky, J.E.Ralph, C.Sung, et al. Generation of
megawatt-power terahertz pulses by noncollinear
difference-frequency mixing in GaAs. J. Appl. Phys.,
2005, 98(2): 26101
S. Y. Tochitsky, C. Sung, S. E. Trubnick, et al. High-power
tunable, 0.5-3 THz radiation source based on nonlinear
difference frequency mixing of CO
2
laser lines. J. Opt.
Soc. Am. B, 2007, 24(9): 2509-2516
Schaar J E,Vodopyanov K L,Kuo P S,et al. Terahertz
Sources Based on Intracavity Parametric Down-
Conversion in Quasi-Phase-Matched Gallium Arsenide.
IEEE Journal of Selected Topics in Quantum
Electronics, 2008, 14(2): 354-362.
Zhang Chengguo, Study on terahertz radiation generated by
optical difference frequency (D) Tianjin University,
2011
Vodopyanov K L, Hurlbut W C, Kozlov V G, Photonic THz
generation in GaAs via resonantly enhanced intracavity
multispectral mixing (J). Appl.Phys. Lett.2011, 99,
041104
SAITO K, TANABE T, OYAMA Y. Cascaded terahertz-
wave generation efficiency in excess of the Manley–
Rowe limit using a cavity phase-matched optical
parametric oscillator. Journal of the Optical Society of
America B, 2015, 32(4): 617-621.
P. A. Cherenkov. Visible glow of pure liquids under γ-
irradiation. Dokl. Akad. Nauk SSSR 1934, 2, 451.
Suizu K, Shibuya T, Uchida H, et al. Prism-coupled
Cherenkov phase-matched terahertz wave generation
using a DAST crystal. Optics Express, 2010,
18(4):3338-3344.
Vijayraghavan K, Adams R W, Vizbaras A, et al. Terahertz
sources based on Cherenkov difference-frequency
generation in quantum cascade laser (J). Appl.Phys. Lett.
2012, 100, 2511044
Juntao Huang, Zhiming Rao, Fangsen Xie. Cascaded DFG
via quasi-phase matching with Cherenkov-type PPLN
for highly efficient terahertz generation, Optics Express,
2019, 27(12):17199-17208.
Zhi-ming Rao, Xin-bing Wang, Yan-Zhao Lu, et al. Two
Schemes for Generating Efficient Terahertz Waves in
Nonlinear Optical Crystals with a Mid-Infrared CO2
Laser(J).Chin. Phys. Lett., 2011, 28(7).176-179
Z. D. Xie, X. J. Liu, Y. H. Liu, et al. Cavity phase matching
via an optical parametric oscillator consisting of a
dielectric nonlinear crystal sheet (J). Physical Review
Letters, 2011, 106(8):083901.
Shijia Z, Zhiming R, Wenjiang T, et al. A cascaded
difference frequency generation method combined with
cavity phase matching and quasi phase matching for
high-efficiency terahertz generation (J). Laser Physics,
2020, 30: 115401.
Skauli T, Kuo P S, Vodopyanov K L, et al. Improved
dispersion relations for GaAs and applications to
nonlinear optics (J). Journal of Applied Physics, 2003,
94(10): 6447-6455.
ANIT 2023 - The International Seminar on Artificial Intelligence, Networking and Information Technology