Figure 2: Architectural Design.
3.2 Comparison of Training Results and
Testing of the Levenberg
Marquardt Method
After training and testing the Levenberg Markquard
method backpropagation algorithm with 11-2-1,11-
3-1,11-8-1,11-10-1,11-5-1,11-6-1,11 architecture -7-
1,11-4-1, the following is a comparison of the Leven-
berg Marquardt architecture with eight architectures.
Table 3: Training and Testing.
No Architecture Epoch Performance Performance
(iterations) Testing Training
1 11-2-1 454 0.0846 0.0846
2 11-3-1 1347 0.0780 0.0780
3 11-8-1 1174 0.0693 0.0693
4 11-10-1 126 0.0150 0.0150
5 11-10-1 126 0.0150 0.0150
6 11-5-1 514 0.0150 0.0150
7 11-6-1 96 0.0350 0.0350
8 11-7-1 59 0.0150 0.0150
9 11-4-1 100000 0.0426 0.0426
4 CONCLUSIONS
Based on the results and discussion described above,
it can be concluded that the Levenberg Marquart
backpropagation method can predict potential mor-
tality in heart failure with MSE training and testing
= 0.0150 with 11-7-1 architecture (Covid, 2022; So-
likhun et al., 2020a). Determination of the method
in backpropagation training is so influential on the re-
sults, and it’s just that the determination of the method
and pattern must be adjusted to the needs (Solikhun
et al., 2020b; Solikhun and Wahyudi, 2021).
REFERENCES
Abdullah, N. and Handayani, L. (2019). Peramalan
rate of return saham menggunakan metode brown’s
weighted exponential moving average dengan opti-
masi levenberg-marquardt: Forecasting the stock rate
of return using the brown’s weighted exponential
moving average method with optimization of leven.
Nat. Sci. J. Sci. Technol, 8(3):171–176,.
Andriani, Y., Wanto, A., and Handrizal, H. (2019). Jaringan
saraf tiruan dalam memprediksi produksi kelapa sawit
di pt. kre menggunakan algoritma levenberg mar-
quardt. Pros. Semin. Nas. Ris. Inf. Sci, 1(Septem-
ber):249,.
Covid, M. (2022). Analisis quantum perceptron un-
tuk memprediksi jumlah pengunjung ucokopi pe-
matangsiantar pada.
Gultom, W., Wanto, A., Gunawan, I., Lubis, M., and Ki-
rana, I. (2021). Application ofthe levenberg mar-
quardt method in predict the amount of criminality in
pematangsiantar city. J. Comput. Networks, Archit.
High-Performance Comput, 3(1):21–29,.
Haring, M., Grotli, E., Riemer-Sorensen, S., Seel, K., and
Hanssen, K. (2022). A levenberg-marquardt algorithm
for sparse identification of dynamical systems. IEEE
Trans. Neural Networks Learn. Syst, pages 1–14,.
Hikmayanti, H., Kom, H., Komarudin, O., Si, S., and Kom,
M. (2014). Penggunaan algoritma backpropagation
levenberg marquardt dan teknik pengolahan citra dig-
ital untuk identifikasi nominal uang kertas. J. Ilm. So-
lusi, 1(2):16–33,.
Lisa, Y. (2015). Levenberg marquardt dan regularisasi
bayes untuk prediksi curah hujan.
Maulana, M. and Muslim, M. (2015). Sistem prediksi tag-
ihan listrik usaha jasa laundry menggunakan jaringan
syaraf tiruan backpropagation. Unnes J. Math, 4(1).
Mokosuli, L., Weku, W., and Latumakulita, L. (2014).
Prediksi tingkat kriminalitas menggunakan jaringan
syaraf tiruan backpropagation: Algoritma levenberg
marquardt di kota manado berbasis sistem informasi
geografi,”d’cartesian.
Prihatiningsih, D. and Sudyasih, T. (2018). Perawatan diri
pada pasien gagal jantung. J. Pendidik. Keperawatan
Indones, 4(2).
Ritha, N., Bettiza, M., and Dufan, A. (2016). Prediksi
curah hujan dengan menggunakan algoritma
levenberg-marquardt dan backpropagation,”j. Sustain,
5(2):11–16,.
Sitompul, H. (2018). Optimasi pemulusan eksponensial
dengan algoritma levenberg-marquardt hery andi sit-
ompul, s.si, m.si dosen kopertis wilayah i sumut, dpk
universitas darma agung.
Solikhun, L. and Wahyudi, M. (2021). Ann : Predicting
of state retail sukuk based on region in indonesia. J.
Phys. Conf. Ser, 1830(1).
ICAISD 2023 - International Conference on Advanced Information Scientific Development
74