Levenberg Marquardt Backpropagation Algorithm in Predicting
Potential Mortality in Heart Failure
Verdi Yasin
1
, Selli Oktaviani
2
, Muryan Awaludin
3
and Ifan Junaedi
1
1
Faculty of Computer Science, STMIK Jayakarta, Jakarta, Indonesia
2
Engineering Study Program, STIKOM Tunas Bangsa, Pemtangsiantar, Indonesia
3
Faculty of Industrial Technology, Universitas Dirgantara Marsekal Suryadarma, Jakarta, Indonesia
Keywords:
Levenberg Marquardt Backpropagation Algorithm, Predicting Potential Mortality, Heart Failure.
Abstract:
Heart failure is one of the most common disorders that attack the heart and blood vessels throughout the world,
resulting in a high average population death rate, and illness also has an impact financially, especially for the
elderly. This study focuses on predicting the potential for death in heart failure using the Levenberg Marquart
algorithm. The data for predicting the potential for death in heart failure was taken from Kaggle, which con-
sisted of 299 records. Attributes used to predict potential death in heart failure consist of 11 attributes, namely
age, gender, anaemia, creatinine phosphokinase, diabetes, ejection fraction, high blood pressure, platelets,
serum creatinine, serum sodium, smoking, and death events. The results of this study are predictions of po-
tential death in heart failure with MSE training and testing = 0.0150. With 11-7-1 architecture.
1 INTRODUCTION
Artificial Intelligence (AI) is a general term that sug-
gests using computers to shape intelligent behaviour
with minimal human intervention. There are many
methods in AI, one of which is Artificial Neural Net-
work Backpropagation (Haring et al., 2022; Zuhrufil-
lah et al., 2022). Heart failure is a complex collection
of symptoms where a patient has various symptoms in
the form of shortness of breath at rest or when doing
activities accompanied by fatigue (Prihatiningsih and
Sudyasih, 2018). Backpropagation is a type of su-
pervised Artificial Neural Network training method.
This network architecture consists of an input layer,
a hidden layer, and an output layer (Sonang et al.,
2021). The Levenberg-Marquardt algorithm is a de-
velopment of the Backpropagation error algorithm.
This algorithm was built to overcome some of the de-
ficiencies that exist in the error algorithm (Andriani
et al., 2019; Maulana and Muslim, 2015; Sitompul,
2018).
2 RESEARCH METHODOLOGY
2.1 Methods of Data Collection
The method of data collection was carried out start-
ing from literature studies (sources used for various
purposes in the world of education both from scien-
tific journals and internet sources)(Abdullah and Han-
dayani, 2019; Lisa, 2015; Mokosuli et al., 2014).
2.2 Data Source
The data used in this study was taken from the
data website www.kagle.com, in the form of medi-
cal records of heart failure data consisting of 299 data
(Hikmayanti et al., 2014; Gultom et al., 2021; Ritha
et al., 2016). The data used for training is 100 records,
and the data used for testing is 100. The following are
299 attributes in the form of data that influence the
occurrence of potential death in heart failure (Yasin
and Junaedi, 2022; Zuhri, 2021).
Information:
X1 = Age
X2 = Gender
X3 = Anemia
X4 = Creatinine Phosphokinase
X5 = Diabetes
72
Yasin, V., Oktaviani, S., Awaludin, M. and Junaedi, I.
Levenberg Marquardt Backpropagation Algorithm in Predicting Potential Mortality in Heart Failure.
DOI: 10.5220/0012444100003848
Paper published under CC license (CC BY-NC-ND 4.0)
In Proceedings of the 3rd International Conference on Advanced Information Scientific Development (ICAISD 2023), pages 72-75
ISBN: 978-989-758-678-1
Proceedings Copyright © 2024 by SCITEPRESS Science and Technology Publications, Lda.
Table 1: Heart Failure Medical Records Data.
No X1 X2 .. X10 X11 T
1 75 0 .. 1 0 1
2 55 0 .. 1 0 1
3 65 0 .. 1 1 1
4 50 1 .. 1 0 1
5 65 1 .. 0 0 1
6 90 1 .. 1 1 1
7 75 1 .. 1 0 1
8 60 1 .. 1 1 1
.. .. .. .. .. .. ..
299 50 0 .. 1 1 0
X6 = Ejection Fraction
X7 = High Blood Pressure
X8 = Platelet
X9 = Serum Creatinine
X10 = Serum Sodium
X11 = smoking
Target = Death Event
Heart failure medical record data is converted with the
following rules:
1. Age:
a. Toddler Age: 0–5 years = 0.1
b. Childhood: 5–11 years = 0.2
c. Early Adolescence: 12–16 years = 0.3
d. Late Adolescence: 17–25 years = 0.4
e. Early adulthood: 26–35 years = 0.5
f. Late adulthood: 36–45 years = 0.6
g. Early Old Age: 46–55 years = 0.7
h. Late Old Age: 56–65 years = 0.8
i. Age of Seniors: ¿ 65 years = 0.9
2. Anemia; if you have anemia = 1, otherwise = 0
3. Creatinine phosphokinase; if normal = 0 other-
wise = 1
4. Diabetes if you have a history of diabetes = 1; oth-
erwise = 0
5. Ejection fraction If normal = 0 otherwise = 1
6. High blood pressure If normal = 0 otherwise = 1
7. Platelets If normal = 0 otherwise = 1
8. Serum creatinine If normal = 0 otherwise = 1
The target of predicting the potential for death in
heart failure is if it causes death, then the value is
1; If not, then the value is 0. The results of con-
verting medical record data for heart failure can
be seen in Table 2.
Table 2: Heart Failure Medical Conversion Data.
No X1 X2 X3 .. X8 X11 T
1 0.9 1 0 .. 0 0 1
2 0.7 1 0 .. 0 0 1
3 0.8 1 0 .. 0 1 1
4 0.7 1 1 .. 0 0 1
5 0.8 0 1 .. 0 0 1
6 0.9 1 1 .. 0 1 1
7 0.9 1 1 .. 1 0 1
8 0.8 1 1 .. 1 1 1
.. .. .. .. .. .. .. ..
299 0.7 1 0 .. 0 1 0
2.3 Research Framework
In completing this research, the authors compiled the
research framework as follows:
Figure 1: Research framework.
2.4 Architectural Design
The architecture consists of 1 input layer block, one
hidden layer block and one output layer block. Figure
2, example of the 11-3-1 architecture .
3 RESULTS AND DISCUSSION
3.1 Best Training and Testing Results
Training data and predictive testing of potential death
from heart failure using the Mathlab 2011a applica-
tion with the Levenberg Marquardt method backprop-
agation algorithm. The best training and testing re-
sults are 11-7-1 with performance testing = 0.0150.
Levenberg Marquardt Backpropagation Algorithm in Predicting Potential Mortality in Heart Failure
73
Figure 2: Architectural Design.
3.2 Comparison of Training Results and
Testing of the Levenberg
Marquardt Method
After training and testing the Levenberg Markquard
method backpropagation algorithm with 11-2-1,11-
3-1,11-8-1,11-10-1,11-5-1,11-6-1,11 architecture -7-
1,11-4-1, the following is a comparison of the Leven-
berg Marquardt architecture with eight architectures.
Table 3: Training and Testing.
No Architecture Epoch Performance Performance
(iterations) Testing Training
1 11-2-1 454 0.0846 0.0846
2 11-3-1 1347 0.0780 0.0780
3 11-8-1 1174 0.0693 0.0693
4 11-10-1 126 0.0150 0.0150
5 11-10-1 126 0.0150 0.0150
6 11-5-1 514 0.0150 0.0150
7 11-6-1 96 0.0350 0.0350
8 11-7-1 59 0.0150 0.0150
9 11-4-1 100000 0.0426 0.0426
4 CONCLUSIONS
Based on the results and discussion described above,
it can be concluded that the Levenberg Marquart
backpropagation method can predict potential mor-
tality in heart failure with MSE training and testing
= 0.0150 with 11-7-1 architecture (Covid, 2022; So-
likhun et al., 2020a). Determination of the method
in backpropagation training is so influential on the re-
sults, and it’s just that the determination of the method
and pattern must be adjusted to the needs (Solikhun
et al., 2020b; Solikhun and Wahyudi, 2021).
REFERENCES
Abdullah, N. and Handayani, L. (2019). Peramalan
rate of return saham menggunakan metode brown’s
weighted exponential moving average dengan opti-
masi levenberg-marquardt: Forecasting the stock rate
of return using the brown’s weighted exponential
moving average method with optimization of leven.
Nat. Sci. J. Sci. Technol, 8(3):171–176,.
Andriani, Y., Wanto, A., and Handrizal, H. (2019). Jaringan
saraf tiruan dalam memprediksi produksi kelapa sawit
di pt. kre menggunakan algoritma levenberg mar-
quardt. Pros. Semin. Nas. Ris. Inf. Sci, 1(Septem-
ber):249,.
Covid, M. (2022). Analisis quantum perceptron un-
tuk memprediksi jumlah pengunjung ucokopi pe-
matangsiantar pada.
Gultom, W., Wanto, A., Gunawan, I., Lubis, M., and Ki-
rana, I. (2021). Application ofthe levenberg mar-
quardt method in predict the amount of criminality in
pematangsiantar city. J. Comput. Networks, Archit.
High-Performance Comput, 3(1):21–29,.
Haring, M., Grotli, E., Riemer-Sorensen, S., Seel, K., and
Hanssen, K. (2022). A levenberg-marquardt algorithm
for sparse identification of dynamical systems. IEEE
Trans. Neural Networks Learn. Syst, pages 1–14,.
Hikmayanti, H., Kom, H., Komarudin, O., Si, S., and Kom,
M. (2014). Penggunaan algoritma backpropagation
levenberg marquardt dan teknik pengolahan citra dig-
ital untuk identifikasi nominal uang kertas. J. Ilm. So-
lusi, 1(2):16–33,.
Lisa, Y. (2015). Levenberg marquardt dan regularisasi
bayes untuk prediksi curah hujan.
Maulana, M. and Muslim, M. (2015). Sistem prediksi tag-
ihan listrik usaha jasa laundry menggunakan jaringan
syaraf tiruan backpropagation. Unnes J. Math, 4(1).
Mokosuli, L., Weku, W., and Latumakulita, L. (2014).
Prediksi tingkat kriminalitas menggunakan jaringan
syaraf tiruan backpropagation: Algoritma levenberg
marquardt di kota manado berbasis sistem informasi
geografi,”d’cartesian.
Prihatiningsih, D. and Sudyasih, T. (2018). Perawatan diri
pada pasien gagal jantung. J. Pendidik. Keperawatan
Indones, 4(2).
Ritha, N., Bettiza, M., and Dufan, A. (2016). Prediksi
curah hujan dengan menggunakan algoritma
levenberg-marquardt dan backpropagation,”j. Sustain,
5(2):11–16,.
Sitompul, H. (2018). Optimasi pemulusan eksponensial
dengan algoritma levenberg-marquardt hery andi sit-
ompul, s.si, m.si dosen kopertis wilayah i sumut, dpk
universitas darma agung.
Solikhun, L. and Wahyudi, M. (2021). Ann : Predicting
of state retail sukuk based on region in indonesia. J.
Phys. Conf. Ser, 1830(1).
ICAISD 2023 - International Conference on Advanced Information Scientific Development
74
Solikhun, M., Safii, M., and Zarlis, M. (2020a). Back-
propagation network optimization using one step se-
cant (oss) algorithm. IOP Conf. Ser. Mater. Sci. Eng,
769(1).
Solikhun, M., Safii, M., and Zarlis, M. (2020b). Resilient
algorithm in predicting fertilizer imports by major
countries. IOP Conf. Ser. Mater. Sci. Eng, 769(1).
Sonang, S., Defit, S., and Ramadhan, M. (2021). Jepin (ju-
rnal edukasi dan penelitian informatika) analisis op-
timasi fungsi pelatihan machine learning neural net-
work dalam peramalan kemiskinan. Online]. Avail-
able:.
Yasin, V. and Junaedi, I. (2022). Algoritma backpropa-
gation metode powell-beale untuk prediksi penyakit
stroke.
Zuhri, A. (2021). Seminar nasional sains dan teknologi in-
formasi (sensasi) optimasi levenberg-marquardt back-
propagation dalam mempercepat pelatihan back-
propagation. Semin. Nas. Sains dan Teknol. Inf,
3(1):627–630,. Online]. Available:.
Zuhrufillah, I., Anggraini, F., and Dewantara, R.
(2022). Peramalan jumlah kasus baru hiv menu-
rut provinsi menggunakan machine learning dengan
teknik levenberg-marquardt. J. Comput. Syst. Infor-
matics, 3(4):212 221,.
Levenberg Marquardt Backpropagation Algorithm in Predicting Potential Mortality in Heart Failure
75