Azumah, S.W.; Elsayed, N.; Adewopo, V.; Zaghloul, Z.S.;
Li, C. (2021) A deep lstm based approach for intrusion
detection iot devices network in smart home. In
Proceedings of the IEEE 7th World Forum on Internet
of Things (WF-IoT), New Orleans, LA, USA, 26–31
July 2021.
Thakkar, A.; Lohiya, R. (2021) A review on machine
learning and deep learning perspectives of IDS for IoT:
Recent updates, security issues, and challenges. Arch.
Comput. Methods Eng, 28, 3211–3243.
Li, Y.; Zuo, Y.; Song, H.; Lv, Z. Deep learning in security
of internet of things. IEEE Internet Things J. (2021);
early access. (CrossRef) 7. Idrissi, I.; Boukabous, M.;
Azizi, M.; Moussaoui, O.; El Fadili, H. Toward a deep
learning-based intrusion detection system for IoT
against botnet attacks. IAES Int. J. Artif. Intell. (IJ-AI)
2021, 10, 110.
Venkatraman, S.; Surendiran, B. (2019) Adaptive hybrid
intrusion detection system for crowd sourced
multimedia internet of things systems. Multimedia
Tools Appl, 79, 3993–4010.
Alladi, T.; Chamola, V.; Sikdar, B.; Choo, K.-K.R. (2020)
Consumer IoT: Security vulnerability case studies and
solutions. IEEE Consum. Electron. Mag, 9, 17–25
Asharf, J.; Moustafa, N.; Khurshid, H.; Debie, E.; Haider,
W.; Wahab, A. A (2020) Review of Intrusion Detection
Systems Using Machine and Deep Learning in Internet
of Things: Challenges, Solutions and Future Directions.
Electronics, 9, 1177.
Wang, X.; Zhao, Y.; Pourpanah, F. (2020) Recent advances
in deep learning. Int. J. Mach. Learn. Cybern, 11, 747–
750.
Abu Al-Haija, Q.; Zein-Sabatto, S. An efficient (2020)
deep-learning-based detection and classification system
for cyber-attacks in IoT communication networks.
Electronics, 9, 2152.
Aversano, L.; Bernardi, M.L.; Cimitile, M.; Pecori, R.
(2021) A systematic review on Deep Learning
approaches for IoT security. Comput. Sci. Rev. 2021,
40, 100389
Stefanos, T.; Lagkas, T.; Rantos, (2022) K. Deep learning
in iot intrusion detection. J. Netw. Syst. Manag. 2022,
30, 1–40.
Deena, S. R., Kumar, G., Vickram, A. S., Singhania, R. R.,
Dong, C. D., Rohini, K., ... & Ponnusamy, V. K. (2022).
Efficiency of various biofilm carriers and microbial
interactions with substrate in moving bed-biofilm
reactor for environmental wastewater treatment.
Bioresource technology, 359, 127421.
R. Pavaiyarkarasi, T. Manimegalai, S. Satheeshkumar, K.
Dhivya and G. Ramkumar, (2022)"A Productive
Feature Selection Criterion for Bot-IoT Recognition
based on Random Forest Algorithm," 2022 IEEE 11th
International Conference on Communication Systems
and Network Technologies (CSNT), Indore, India,
2022, pp. 539-545, doi:
10.1109/CSNT54456.2022.9787583.
K. Biswas and V. Muthukkumarasamy, (2016) "Securing
smart cities using blockchain technology", 2016 IEEE
18th international conference on high performance
computing and communications; IEEE 14th
international conference on smart city; IEEE 2nd
international conference on data science and systems
(HPCC/SmartCity/DSS), pp. 1392-1393, 2016.
D. Han, H. Kim and J. Jang, (2017) "Blockchain based
smart door lock system", 2017 International
Conference on Information and Communication
Technology Convergence (ICTC), pp. 1165-1167,
2017.
Dorri, S. S. Kanhere and R. Jurdak, (2017) "Towards an
optimized blockchain for iot", Proceedings of the
Second International Conference on Internet-of-Things
Design and Implementation, pp. 173-178, 2017.
Enhancing QoS in 5G IoT with CNN and Blockchain Security vs. Deep Reinforcement Learning
63