infrared communication. 2017 IEEE International
Conference on Consumer Electronics - Taiwan, ICCE-
TW 2017, 297–298. https://doi.org/10.1109/ICCE-
China.2017.7991113
Chen, Y., & Yuan, L. (2020). Dynamic Convolution :
Attention over Convolution Kernels. 11027– 11036.
https://doi.org/10.1109/CVPR42600.2020.0110 4
Chung, C., Patel, S., Lee, R., Fu, L., Reilly, S., Ho, T.,
Lionetti, J., George, M. D., & Taylor, P. (2018).
Published as a conference paper at ICLR 2015 Very
Deep Convolutional Networks For Large-Scale Image
Recognition
Karen. American Journal of Health-System Pharmacy,
75(6), 398–406.
De, E. (n.d.). Deep-Learning-Based Image Reconstruction
and Enhancement in Optical Microscopy. 1–21.
https://doi.org/10.1109/JPROC.2019.2949575
Devkota, P., Manda, P., Devkota, P., Mohanty, S. D., &
Manda, P. (2022). Deep learning architectures for
recognizing ontology concepts from scienti c literature
Deep learning architectures for recognizing ontology
concepts from scientific literature.
Dong, N., & Xing, E. P. (2018). Few-Shot Semantic
Segmentation with Prototype Learning. 1–13.
Girshick, R., Donahue, J., Darrell, T., & Malik, J. (2014).
Rich feature hierarchies for accurate object detection
and semantic segmentation. Proceedings of the IEEE
Computer Society Conference on Computer Vision and
Pattern Recognition, 580–587. https://doi.org/
10.1109/CVPR.2014.81
Guo, Y., Zeng, Y., Gao, F., Qiu, Y. I., Zhou, X., Zhong, L.,
& Zhan, C. (2022). Improved YOLOV4-CSP
Algorithm for Detection of Bamboo Surface Sliver
Defects With Extreme Aspect Ratio. IEEE Access, 10,
29810–29820. https://doi.org/10.1109/ACCESS.202
2.3152552
Iskandar Mulyana, D., & Rofik, M. A. (2022).
Implementasi Deteksi Real Time Klasifikasi Jenis
Kendaraan Di Indonesia Menggunakan Metode
YOLOV5. Jurnal Pendidikan Tambusai, 6(3), 13971–
13982. https://doi.org/10.31004/jptam.v6i3.4825
Li, Y., & Lin, G. (2019). Design of intelligent parking lot
based on Arduino. IOP Conference Series: Materials
Science and Engineering, 490(4), 3596–3601.
https://doi.org/10.1088/1757-899X/490/4/042010
Lin, T., Zitnick, C. L., & Doll, P. (n.d.). Microsoft COCO :
Common Objects in Context. 1–15.
Padilla Carrasco, D., Rashwan, H. A., Garcia, M. A., &
Puig, D. (2023). T-YOLO: Tiny Vehicle Detection
Based on YOLO and Multi-Scale Convolutional Neural
Networks. IEEE Access, 11(March), 22430–22440.
https://doi.org/10.1109/ACCESS.2021.3137638
Peng, C. F., Hsieh, J. W., Leu, S. W., & Chuang, C. H.
(2018). Drone-based vacant parking space detection.
Proceedings-32
nd
IEEE International Conference on
Advanced Information Networking and Applications
Workshops, WAINA 2018, 2018-Janua, 618–622.
https://doi.org/10.1109/WAINA.2018.00155
Redmon, J., Divvala, S., Girshick, R., & Farhadi, A. (2016).
You only look once: Unified, real-time object detection.
Proceedings of the IEEE Computer Society Conference
on Computer Vision and Pattern Recognition, 2016-
Decem, 779–788. https://doi.org/
10.1109/CVPR.2016.91
Ren, S., He, K., Girshick, R., & Sun, J. (2017). Faster R-
CNN: Towards Real-Time Object Detection with
Region Proposal Networks. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 39(6),
1137–1149. https://doi.org/10.1109/TPAMI.2016.25
77031
Salim, A. (2020). Object Detection (Case: Plat Detection).
https://medium.com/bisa-ai/object-detection-case-plat-
detection-7cb5f53682ae
Shao, Y., Chen, P., & Cao, T. (2018). A grid projection
method based on ultrasonic sensor for parking space
detection. International Geoscience and Remote
Sensing Symposium (IGARSS), 2018-July, 3378–3381.
https://doi.org/10.1109/IGARSS.2018.8519022
Shorten, C., & Khoshgoftaar, T. M. (2019). A survey
on Image Data Augmentation for Deep Learning.
Journal of Big Data. https://doi.org/10.1186/s40537-
019-0197-0 Tan, S., Lu, G., Jiang, Z., & Huang, L.
(2021).
Improved YOLOv5 network model and application in
safety helmet detection. ISR 2021 - 2021 IEEE
International Conference on Intelligence and Safety for
Robotics, 330–333. https://doi.org/10.1109/
ISR50024.2021.941956 1
Thomas, T., & Bhatt, T. (2018). Smart Car Parking System
Using Convolutional Neural Network. Proceedings of
the International Conference on Inventive Research in
Computing Applications, ICIRCA 2018, Icirca, 172–
174. https://doi.org/10.11 09/ICIRCA.2018.8597227
Tian, M., & Liao, Z. (2021). Research on Flower Image
Classification Method Based on YOLOv5. Journal of
Physics: Conference Series, 2024(1), 012022.
https://doi.org/10.1088/1742- 6596/2024/1/012022
Wei, R., He, N., & Lu, K. (2020). YOLO-mini-tiger: Amur
tiger detection. ICMR 2020 - Proceedings of the 2020
International Conference on Multimedia Retrieval,
517–524. https://doi.org/10.1145/33722 78.3390710
Yang, S. J., Berndl, M., Ando, D. M., Barch, M.,
Narayanaswamy, A., Christiansen, E., Hoyer, S., Roat,
C., Hung, J., Rueden, C. T., Shankar, A., Finkbeiner, S.,
& Nelson, P. (2018). Assessing microscope image focus
quality with deep learning. 1–9.
Zhou, F., & Li, Q. (2014). Parking guidance system based
on zigbee and geomagnetic sensor technology.
Proceedings - 13th International Symposium on
Distributed Computing and Applications to Business,
Engineering and Science, DCABES 2014, 268–271.
https://doi.org/10.1109/DCABES.2014.58
ISCP UTA ’45 JAKARTA 2023 - THE INTERNATIONAL SEMINAR AND CALL FOR PAPER (ISCP) UTA ’45 JAKARTA
466