Some Fixed-Point Results of ฮฑ-Admissible Mappings in Partial Cone
Metric Spaces over Banach Algebra
Jerolina Fernandez
Department of Mathematics and Statistics, The Bhopal School of Social Sciences, Bhopal, India
Keywords: PCMS over BA,
๐›ผ
-Admissible Mappings, Fixed-Point.
Abstract: The article presents ฮฑ-admissible mappings in Partial Cone Metric Spaces (PCMS) over Banach Algebra
(BA), exploring fixed-point results in this context. It builds upon the foundational work of Liu and Xu [2013],
which introduced CMS over BA, marking a significant step in fixed-point theory. Fernandez et al. [2016]
extended this to PCMS over BA, examining fixed-point results for generalized Lipschitz mappings. This study
defines and explores ฮฑ-admissible mappings in the newly established space, offering results that extend
previous findings. The main theorem establishes conditions for the existence of fixed-points for ฮฑ-admissible,
generalized Lipschitz self-maps in ฮธ-complete PCMS over BA, contributing to this evolving area of
mathematics.
1 INTRODUCTION
Liu and Xu (2013) introduced the notion of CMS over
BA by replacing the Banach space by Banach algebra
which became a milestone in the study of fixed-point
theory. Moreover, they gave some examples to
elucidate that fixed-point results in CMS over BA are
not equivalent to metric spaces (in usual sense).
Recently, Fernandez et al., (2016) introduced the
concept of PCMS over BA and studied some fixed-
point results for generalized Lipschitz mappings.
Inspired by the previous notion, in this paper we
establish some fixed-point results of ๐›ผ-admissible
mappings in the newly defined space. Our results
generalize and extend the recent result of Malhotra et
al. (2015).
2 PRELIMINARIES
First, we define PCMS over BA.
Definition 2.1.[1] A partial cone metric on a
nonempty set M is a function ๐‘:Mร—M A such that
for all ๐›ฝ,๐›พ,๐›ฟ M:
(๐‘
๎ฌต
) ๐›ฝ = ๐›พ
โ‡”
๐‘(๐›ฝ, ๐›ฝ) = ๐‘ (๐›ฝ, ๐›พ) = ๐‘(๐›พ, ๐›พ),
(๐‘
๎ฌถ
) โ‰ผ ๐‘(๐›ฝ, ๐›ฝ) โ‰ผ ๐‘(๐›ฝ, ๐›พ),
(๐‘
๎ฌท
) ๐‘(๐›ฝ, ๐›พ) =๐‘(๐›พ, ๐›ฝ),
(๐‘
๎ฌธ
)๐‘(๐›ฝ, ๐›พ) โ‰ผ ๐‘ (๐›ฝ, ๐›ฟ)+ p(๐›ฟ, ๐›พ) - ๐‘(๐›ฟ, ๐›ฟ).
The pair (M, p) is called a PCMS over BA.
Lemma 2.2. ([5]). Let A be a Banach algebra with
a unit e, k A, then ๐‘™๐‘–๐‘š
๎ฏกโ†’๎ฎถ
โ€–๐‘˜
๎ฏก
โ€–
๎ฐญ
๎ณ™
exists and the
spectral radius (k) satisfies
(k) =๐‘™๐‘–๐‘š
๎ฏกโ†’๎ฎถ
โ€–๐‘˜
๎ฏก
โ€–
๎ฐญ
๎ณ™
= inf โ€–๐‘˜
๎ฏก
โ€–
๎ฐญ
๎ณ™
.
If (k) <
||
, then ( e- k) is invertible in A,
moreover,
๏ˆบ๐‘’ โ€“๐‘˜๏ˆป
๎ฌฟ๎ฌต
=
โˆ‘
๎ฏœ๎ญ€๎ฌด
๎ฏž
๎ณ”
๎ณ”๎ฐถ๎ฐญ
where is a complex constant.
Lemma 2.3. ([2]). If E is a real Banach space with
a solid cone P and {u
n
} P be a sequence with โ€–๐‘ข
๎ฏก
โ€–
0 (n โˆž), then {u
n
} is a c-sequence.
Lemma 2.4. ([2]). Let A be a Banach algebra with
a unit e and kA. If is a complex constant and
(k) <
||
,then
(๏ˆบ๐‘’ ๎ต† ๐‘˜๏ˆป
๎ฌฟ๎ฌต
๏ˆป
๎ฌต
||
๎ฌฟ ๏ˆบ๎ฏž๏ˆป
.
192
Fernandez, J.
Some Fixed-Point Results of A-Admissible Mappings in Partial Cone Metric Spaces over Banach Algebra.
DOI: 10.5220/0012610300003739
Paper published under CC license (CC BY-NC-ND 4.0)
In Proceedings of the 1st International Conference on Arti๏ฌcial Intelligence for Internet of Things: Accelerating Innovation in Industry and Consumer Electronics (AI4IoT 2023), pages 192-194
ISBN: 978-989-758-661-3
Proceedings Copyright ยฉ 2024 by SCITEPRESS โ€“ Science and Technology Publications, Lda.
3 DISCUSSION AND MAIN
RESULTS
In this section, we introduce the concept of ๐›ผ-
admissible mappings in PCMS over BA.
Definition 3.1. Let M be a nonempty set and ๐›ผ:
M ๎ตˆM โ†’[0;โˆž) be a function. We say that T is ๐›ผ-
admissible if (๐›ฝ, ๐›พ) โˆˆM, ๐›ผ(๐›ฝ, ๐›พ) ๎ต’1 โ‡’ ๐›ผ(T ๐›ฝ, T
๐›พ)๎ต’1.
Example 3.2. Let M = [0, ) and A be the set of
all real valued function on M which also have
continuous derivatives on M with the norm โ€–๐›ฝโ€–=
โ€–๐›ฝโ€– + โ€–๐›ฝ
๏‡ฑ
โ€– . Define multiplication in the usual
way. Let P = { ๐›ฝ A: ๐›ฝ (t) 0, t M}. It is clear
that P is a nonnormal cone and A is a Banach algebra
with a unit e = 1. Define a mapping ๐‘: MM A by
๐‘ (๐›ฝ, ๐›พ) = ๏ˆผ๐›ฝ๐‘’
๎ฏง
, ๐›ฝ ๎ตŒ ๐›พ ๏ˆบ๐›ฝ ๎ต… ๐‘ฆ๏ˆป๐‘’
๎ฏง
,
๐‘œ๐‘กโ„Ž๐‘’๐‘Ÿ๐‘ค๐‘–๐‘ ๐‘’
Define a self-map T on M as follows
T ๐›ฝ = ๏ˆผ
๎ด
๎ฐฎ
, ๎ฏข๎ฏง๎ฏ›๎ฏ˜๎ฏฅ๎ฏช๎ฏœ๎ฏฆ๎ฏ˜
๎ฏŸ๎ฏก
๏‰€
๎ฌต ๎ฌพ
๎ด
๎ฐฏ
๏‰
, ๎ฐ‰ โˆˆ๏ˆพ๎ฌด,๎ฌต๏ˆฟ
and ๐›ผ๏ˆบ๐›ฝ,๐›พ๏ˆป=๏ˆผ
๎ฌด, ๎ฏข๎ฏง๎ฏ›๎ฏ˜๎ฏฅ๎ฏช๎ฏœ๎ฏฆ๎ฏ˜
๎ฌต ,๎ฐ‰,๎ฐŠ โˆˆ๏ˆพ๎ฌด,๎ฌต๏ˆฟ
Since ln(1 + t) t for each t [0, 1), for all ๐›ฝ, ๐›พ
X, we have
when ๐›ฝ ๐›พ
๐‘(T ๐›ฝ, T ๐›พ)(t) =
๏‰€
๐‘™๐‘› ๐‘™๐‘›
๏‰€
1๎ต…
๎ฐ‰
๎ฌท
๏‰
๎ต… ๐‘™๐‘›๐‘™๐‘›
๏‰€
1๎ต…
๎ฐŠ
๎ฌท
๏‰
๏‰
๐‘’
๎ฏง
โ‰ผ
๏‰€
๎ฐ‰
๎ฌท
๎ต…
๎ฐŠ
๎ฌท
๏‰
๐‘’
๎ฏง
=
๎ฌต
๎ฌท
๏ˆบ๐›ฝ ๎ต… ๐›พ๏ˆป๐‘’
๎ฏง
โ‰ผ
๎ฌต
๎ฌท
๐‘(๐›ฝ, ๐›พ) ๏ˆบ๐‘ก๏ˆป
and when ๐›ฝ = ๐›พ,
๐‘(T ๐›ฝ, T ๐›ฝ)(t) =
๏‰€
๐‘™๐‘› ๐‘™๐‘›
๏‰€
1๎ต…
๎ฐ‰
๎ฌท
๏‰
๏‰
๐‘’
๎ฏง
โ‰ผ
๏‰€
๎ฐ‰
๎ฌท
๏‰
๐‘’
๎ฏง
=
๎ฌต
๎ฌท
๐›ฝ๐‘’
๎ฏง
โ‰ผ
๎ฌต
๎ฌท
๐‘(๐›ฝ, ๐›ฝ)(t).
Therefore, ๐‘(T ๐›ฝ, T ๐›พ)(t) โ‰ผ
๎ฌต
๎ฌท
๐‘(๐›ฝ, ๐›พ)(t). Thus, T is
a Generalized Lipschitz map in M where ๐œŒ(k) =
๎ฌต
๎ฌท
< 1
and ฮฑ(๐›ฝ,๐›พ) โ‰ฅ 1.
Theorem 3.3. Let (M, ๐‘) be a ๐œƒ-complete PCMS
over BA Suppose T be a generalized Lipschitz self-
map with Lipschitz vector k satisfying:
(i) T is ๐›ผ-admissible;
(ii) there exists ๐›ฝ
๎ฌด
โˆˆ X such that ๐›ผ(๐›ฝ
๎ฌด
, T๐›ฝ
๎ฌด
) ๎ต’ 1;
(iii) T is continuous.
Then T has a fixed-point ๐›ฝ
โˆ—
โˆˆ M.
Proof. Let ๐›ฝ
๎ฌด
โˆˆ M such that ๐›ผ(๐›ฝ
๎ฌด
, T๐›ฝ
๎ฌด
) ๎ต’ 1.
Define a sequence {๐›ฝ
๎ฏก
} in M such that ๐›ฝ
๎ฏก
= T๐›ฝ
๎ฏก๎ฌฟ๎ฌต
โˆ€
n โˆˆ N. If ๐›ฝ
๎ฏก
= ๐›ฝ
๎ฏก๎ฌพ๎ฌต
โˆ€ n โˆˆ N, then ๐›ฝ
โˆ—
๎ตŒ๐›ฝ
๎ฏก
is a fixed-
point for T. Suppose ๐›ฝ
๎ฏก
= ๐›ฝ
๎ฏก๎ฌพ๎ฌต
for all n โˆˆ N. Since T
is ๐›ผ-admissible we deduce
๐›ผ(๐›ฝ
๎ฌด
, ๐›ฝ
๎ฌต
) = ๐›ผ(๐›ฝ
๎ฌด
, T๐›ฝ
๎ฌด
) ๎ต’ 1 โ‡’ ๐›ผ(T๐›ฝ
๎ฌด
,๐‘‡
๎ฌถ
๐›ฝ
๎ฌด
) =
๐›ผ(๐›ฝ
๎ฌต
, ๐›ฝ
๎ฌถ
) ๎ต’ 1:
Continuing, we get
๐›ผ(๐›ฝ
๎ฏก
,๐›ฝ
๎ฏก๎ฌพ๎ฌต
) ๎ต’ 1 for all n โˆˆ N.
Now,
๐‘ (๐›ฝ
๎ฏก
, ๐›ฝ
๎ฏก๎ฌพ ๎ฌต
) = ๐‘ (๐‘‡๐›ฝ
๎ฏก๎ฌฟ๎ฌต
, ๐‘‡๐›ฝ
๎ฏก
)
โ‰ผ k ๐‘(๐›ฝ
๎ฏก๎ฌฟ๎ฌต
, ๐›ฝ
๎ฏก
)
โ‰ผ ๐‘˜
๎ฏก
๐‘(๐›ฝ
๎ฌด
, ๐›ฝ
๎ฌต
).
For n < m we have
๐‘ (๐›ฝ
๎ฏก
, ๐›ฝ
๎ฏ 
)โ‰ผ ๐‘ (๐›ฝ
๎ฏก
, ๐›ฝ
๎ฏก ๎ฌพ ๎ฌต
) + ๐‘ (๐›ฝ
๎ฏก๎ฌพ๎ฌต
, ๐›ฝ
๎ฏ 
) - ๐‘
(๐›ฝ
๎ฏก๎ฌพ๎ฌต
, ๐›ฝ
๎ฏก ๎ฌพ ๎ฌต
)
โ‰ผ ๐‘ (๐›ฝ
๎ฏก
, ๐›ฝ
๎ฏก ๎ฌพ ๎ฌต
) + ๐‘ (๐›ฝ
๎ฏก๎ฌพ๎ฌต
, ๐›ฝ
๎ฏ 
)
โ‰ผ ๐‘(๐›ฝ
๎ฏก
,๐›ฝ
๎ฏก ๎ฌพ ๎ฌต
) + ๐‘ (๐›ฝ
๎ฏก๎ฌพ๎ฌต
,๐›ฝ
๎ฏก ๎ฌพ ๎ฌถ
) +
๐‘ (๐›ฝ
๎ฏก๎ฌพ๎ฌถ
,๐›ฝ
๎ฏ 
)-๐‘ (๐›ฝ
๎ฏก๎ฌพ๎ฌถ
, ๐›ฝ
๎ฏก ๎ฌพ ๎ฌถ
)
โ€ฆ.
โ‰ผ ๐‘ (๐›ฝ
๎ฏก
, ๐›ฝ
๎ฏก ๎ฌพ ๎ฌต
) + ๐‘ (๐›ฝ
๎ฏก๎ฌพ๎ฌต
, ๐›ฝ
๎ฏก ๎ฌพ ๎ฌถ
)
+ ๐‘ (๐›ฝ
๎ฏก๎ฌพ๎ฌถ
, ๐›ฝ
๎ฏ 
)
โ‰ผ ๐‘(๐›ฝ
๎ฏก
, ๐›ฝ
๎ฏก ๎ฌพ ๎ฌต
) + ๐‘(๐›ฝ
๎ฏก๎ฌพ๎ฌต
, ๐›ฝ
๎ฏก ๎ฌพ ๎ฌถ
)
+๐‘(๐›ฝ
๎ฏก๎ฌพ๎ฌถ
, ๐›ฝ
๎ฏก ๎ฌพ ๎ฌท
)+ โ€ฆโ€ฆ+ ๐‘(๐›ฝ
๎ฏ ๎ฌฟ๎ฌถ
, ๐›ฝ
๎ฏ  ๎ฌฟ ๎ฌต
) + ๐‘(๐›ฝ
๎ฏ ๎ฌฟ๎ฌต
, ๐›ฝ
๎ฏ 
)
โ‰ผ ๐‘˜
๎ฏก
๐‘(๐›ฝ
๎ฌด
, ๐›ฝ
๎ฌต
) +๐‘˜
๎ฏก๎ฌพ๎ฌต
๐‘(๐›ฝ
๎ฌด
, ๐›ฝ
๎ฌต
)
+ ๐‘˜
๎ฏก๎ฌพ๎ฌถ
๐‘(๐›ฝ
๎ฌด
, ๐›ฝ
๎ฌต
)+โ€ฆ....+ ๐‘˜
๎ฏ ๎ฌฟ๎ฌต
๐‘(๐›ฝ
๎ฌด
, ๐›ฝ
๎ฌต
)
= ๐‘˜
๎ฏก
๏ˆพ e + k + ๐‘˜
๎ฌถ
+ โ€ฆโ€ฆโ€ฆ+ ๏ˆบ๐‘˜๏ˆป
๎ฏ ๎ฌฟ๎ฏก๎ฌฟ๎ฌต
]๐‘(๐›ฝ
๎ฌด
, ๐›ฝ
๎ฌต
)
โ‰ผ ๐‘˜
๎ฏก
๏ˆบ๐‘’ ๎ต† ๐‘˜๏ˆป
๎ฌฟ๎ฌต
๐‘(๐›ฝ
๎ฌด
, ๐›ฝ
๎ฌต
).
Some Fixed-Point Results of A-Admissible Mappings in Partial Cone Metric Spaces over Banach Algebra
193
Then โ€–๐‘˜
๎ฏก
๐‘๏ˆบ๐›ฝ
๎ฌด
,๐›ฝ
๎ฌต
๏ˆปโ€–โ€–๐‘˜
๎ฏก
โ€–โ€–๐‘๏ˆบ๐›ฝ
๎ฌด
,๐›ฝ
๎ฌต
๏ˆปโ€– 0 (n
), by Lemma 2.3, ๏ˆผ๐‘˜
๎ฏก
๐‘๏ˆบ๐›ฝ
๎ฌด
,๐›ฝ
๎ฌต
๏ˆป} is a c-
sequence. By Lemma 2.2 and Lemma 2.4, {๐›ฝ
๎ฏก
} is a
๐œƒ-Cauchy sequence. Since M is complete, โˆƒ ๐›ฝ
โˆ—
โˆˆ M
such that ๐›ฝ
๎ฏก
โ†’๐›ฝ
โˆ—
as n โ†’โˆž. Therefore,
๐‘ (๐›ฝ
๎ฏก
, ๐›ฝ
โˆ—
๏ˆป = ๐‘ (๐›ฝ
๎ฏก
, ๐›ฝ
๎ฏ 
๏ˆป = ๐‘(๐›ฝ
โˆ—
, ๐›ฝ
โˆ—
๏ˆป = .
Since T is continuous, we have ๐›ฝ
๎ฏก๎ฌพ๎ฌต
= T๐›ฝ
๎ฏก
โ†’
T๐›ฝ
โˆ—
as n โ†’โˆž. By uniqueness, ๐›ฝ
โˆ—
= T๐›ฝ
โˆ—
, that is ๐›ฝ
โˆ—
is
a fixed-point of T.
REFERENCES
Fernandez J. (2016), Partial cone metric spaces over
Banach algebra with applications, (Accepted) 31
st
M.P.
Young Scientist Congress.
Huang H, and Radenovic S. (2015), Common fixed-point
theorems of Generalized Lipschitz mappings in cone
metric spaces over Banach algebras, Appl. Math. Inf.
Sci. 9, No. 6, 2983-2990.
Liu, H, Xu, S. (2013), Cone metric spaces with Banach
algebras and fixed-point theorems of generalized
Lipschitz mappings, Fixed-point Theory Appl., 320.
Malhotra S.K., Sharma J.B. and Shukla S. (2015), Fixed-
points of ๐›ผ-admissible mappings in Cone metric spaces
with Banach algebra, International Journal of Analysis
and Applications, Volume 9, Number 1, 9-18.
Rudin, W. (1991), Functional Analysis, 2nd Edn. McGraw-
Hill, New York.
AI4IoT 2023 - First International Conference on Arti๏ฌcial Intelligence for Internet of things (AI4IOT): Accelerating Innovation in Industry
and Consumer Electronics
194