ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining.
David, D. (2020). Random Forest Classifier Tutorial: How
to Use Tree-Based Algorithms for Machine Learning.
FreeCodeCamp.
https://www.freecodecamp.org/news/how-to-use-the-
tree-based-algorithm-for-machine-learning/
Dutt, S., Chandramouli, S., & Das, A. K. (2019). Machine
Learning. In Pearson. Pearson India Educa?ion
Services Pvt. Ltd.
Fan, J., Lee, J., & Lee, Y. (2021). A transfer learning
architecture based on a support vector machine for
histopathology image classification. Applied Sciences
(Switzerland), 11(14).
https://doi.org/10.3390/app11146380
Gianey, H. K., & Choudhary, R. (2018). Comprehensive
Review On Supervised Machine Learning Algorithms.
Proceedings - 2017 International Conference on
Machine Learning and Data Science, MLDS 2017,
2018-Janua(December 2017), 38–43.
https://doi.org/10.1109/MLDS.2017.11
Grant, M. J., & Booth, A. (2009). A typology of reviews:
An analysis of 14 review types and associated
methodologies. Health Information and Libraries
Journal, 26(2), 91–108. https://doi.org/10.1111/j.1471-
1842.2009.00848.x
Gurney, K. (1997). Introduction to neural networks. In
Routledge (Vol. 317). UCL Press Limited.
https://doi.org/10.1016/S0140-6736(95)91746-2
H, V. M. (2023). What Is Machine Learning? Components
And Applications. VTUPulse.
https://www.vtupulse.com/machine-learning/what-is-
machine-learning-components-and-applications/
Hastie, T., Tibshirani, R., James, G., & Witten, D. (2006).
An Introduction to Statistical Learning Second Edition.
Springer Texts, 102, 618.
Holzinger, A., Weippl, E., Tjoa, A. M., & Kieseberg, P.
(2021). Digital Transformation for Sustainable
Development Goals (SDGs) - A Security, Safety and
Privacy Perspective on AI. International Cross-
Domain Conference for Machine Learning and
Knowledge Extraction, 1–20.
https://doi.org/10.1007/978-3-030-84060-0
International Telecommunication Union. (2021). United
Nations Activities on Artificial Intelligence.
Jakkula, V. (2011). Tutorial on Support Vector Machine
(SVM). School of EECS, Washington State University,
1–13.
http://www.ccs.neu.edu/course/cs5100f11/resources/ja
kkula.pdf
Khanum, M., Mahboob, T., Imtiaz, W., Abdul Ghafoor, H.,
& Sehar, R. (2015). A Survey on Unsupervised
Machine Learning Algorithms for Automation,
Classification and Maintenance. International Journal
of Computer Applications, 119(13), 34–39.
https://doi.org/10.5120/21131-4058
Leal Filho, W., Yang, P., Eustachio, J. H. P. P., Azul, A.
M., Gellers, J. C., Gielczyk, A., Dinis, M. A. P., &
Kozlova, V. (2023). Deploying digitalisation and
artificial intelligence in sustainable development
research. In Environment, Development and
Sustainability (Vol. 25, Issue 6). Springer Netherlands.
https://doi.org/10.1007/s10668-022-02252-3
Lindholm, A., Wahlström, N., Lindsten, F., & Schön, T. B.
(2019). Supervised Machine Learning: Statistical
Machine Learning course (p. 112).
http://www.it.uu.se/edu/course/homepage/sml/literatur
e/lecture_notes.pdf
Maertens, R. M., Long, A. S., & White, P. A. (2017).
Performance of the in vitro transgene mutation assay in
MutaMouse FE1 cells: Evaluation of nine misleading
(“False”) positive chemicals. Environmental and
Molecular Mutagenesis, 58(8), 582–591.
https://doi.org/10.1002/em.22125
Mahesh Batta. (2020). Machine Learning Algorithms - A
Review. International Journal of Science and Research
(IJSR), January 2019.
https://doi.org/10.21275/ART20203995
Matloff, N. (2017). Statistical Regression and
Classification. Statistical Regression and
Classification. https://doi.org/10.1201/9781315119588
Mijwel, M. M., Esen, A., & Shamil, A. (2019). Overview
of Neural Networks. In Neural Networks and Fuzzy
Systems (Issue April). https://doi.org/10.1007/978-1-
4615-6253-5_1
Morimoto, J., & Ponton, F. (2021). Virtual reality in
biology: could we become virtual naturalists?
Evolution: Education and Outreach, 14(1), 1–14.
https://doi.org/10.1186/s12052-021-00147-x
Muhammad, I., & Yan, Z. (2015). Supervised Machine
Learning Approaches: a Survey. ICTACT Journal on
Soft Computing, 05(03), 946–952.
https://doi.org/10.21917/ijsc.2015.0133
Müller, A. C., & Guido, S. (2016). Introduction to Machine
Learning with Python (D. Schanafelt (ed.); 3rd ed.).
O’Reilly Media, Inc.
https://www.oreilly.com/library/view/introduction-to-
machine/9781449369880/
Naeem, M., Rizvi, S. T. H., & Coronato, A. (2020). A
Gentle Introduction to Reinforcement Learning and its
Application in Different Fields. IEEE Access, 8,
209320–209344.
https://doi.org/10.1109/ACCESS.2020.3038605
Nasir, O., Javed, R. T., Gupta, S., Vinuesa, R., & Qadir, J.
(2023). Artificial intelligence and sustainable
development goals nexus via four vantage points.
Technology in Society, 72(November 2022), 102171.
https://doi.org/10.1016/j.techsoc.2022.102171
Natekin, A., & Knoll, A. (2013). Gradient boosting
machines, a tutorial. Frontiers in Neurorobotics,
7(DEC). https://doi.org/10.3389/fnbot.2013.00021
Ng, A. (2005). Lecture notes Supervised Learning (Issue 0).
Polzer, D. (2021).
7 of the Most Used Regression
Algorithms and How to Choose the Right One. Towards
Data Science. https://towardsdatascience.com/7-of-the-
most-commonly-used-regression-algorithms-and-how-
to-choose-the-right-one-fc3c8890f9e3
Prasad, P. (2023). The Application of Machine Learning
Techniques to the Diagnosis of Breast Cancer. 2023 3rd
International Conference on Artificial Intelligence and