
non-expert users managed to produce annotations of
which 10% referred to more than a single dataset.
With this study, we managed to design, implement
and evaluate a novel visualization system to com-
pare complex temporal OD data and arbitrary spatio-
temporal datasets.
REFERENCES
Andrienko, G., Andrienko, N., Chen, W., Maciejewski, R.,
and Zhao, Y. (2017). Visual analytics of mobility and
transportation: State of the art and further research
directions. IEEE Transactions on Intelligent Trans-
portation Systems, 18(8):2232–2249.
Bourqui, R., Ienco, D., Sallaberry, A., and Poncelet, P.
(2016). Multilayer graph edge bundling. In 2016
IEEE Pacific Visualization Symposium (PacificVis),
pages 184–188. IEEE.
Boyandin, I. (2013). Visualization of temporal origin-
destination data.
Boyandin, I., Bertini, E., Bak, P., and Lalanne, D. (2011).
Flowstrates: An approach for visual exploration of
temporal origin-destination data. Comput. Graph. Fo-
rum, 30:971–980.
Boyandin, I., Bertini, E., and Lalanne, D. (2012). A qual-
itative study on the exploration of temporal changes
in flow maps with animation and small-multiples. In
Computer Graphics Forum, volume 31, pages 1005–
1014. Wiley Online Library.
Cuenca, E., UCLouvain, Docquier, F., Nijssen, S., and
Schaus, P. (2019). Evoflows: an interactive approach
for visualizing spatial and temporal trends in origin-
destination data.
Eccles, R., Kapler, T., Harper, R., and Wright, W. (2007).
Stories in geotime. In 2007 IEEE Symposium on Vi-
sual Analytics Science and Technology, pages 19–26.
Fish, C., Goldsberry, K. P., and Battersby, S. (2011).
Change blindness in animated choropleth maps: An
empirical study. Cartography and Geographic Infor-
mation Science, 38(4):350–362.
Fleiss, J. (1971). Measuring nominal scale agree-
ment among many raters. Psychological bulletin,
76(5):378—382.
Fuchs, N. (2022). Flowstrates++: a visualization tool for
multi-dimensional temporal origin-destination data.
Isenberg, T., Isenberg, P., Chen, J., Sedlmair, M., and
M
¨
oller, T. (2013). A Systematic Review on the
Practice of Evaluating Visualization. IEEE Trans-
actions on Visualization and Computer Graphics,
19(12):2818–2827.
Kapler, T. and Wright, W. (2005). Geo time information vi-
sualization. Information Visualization, 4(2):136–146.
Kjellin, A., Pettersson, L. W., Seipel, S., and Lind, M.
(2008). Evaluating 2d and 3d visualizations of spa-
tiotemporal information. ACM Trans. Appl. Percept.,
7(3).
Koylu, C., Tian, G., and Windsor, M. (2022). Flowmapper.
org: a web-based framework for designing origin–
destination flow maps. Journal of Maps, pages 1–9.
Lam, H., Bertini, E., Isenberg, P., Plaisant, C., and Carpen-
dale, S. (2012). Empirical studies in information vi-
sualization: Seven scenarios. IEEE Transactions on
Visualization and Computer Graphics, 18(9):1520–
1536.
Merino, L., Ghafari, M., Anslow, C., and Nierstrasz, O.
(2018). A systematic literature review of software vi-
sualization evaluation. Journal of Systems and Soft-
ware, 144:165–180.
Munzner, T. (2014). Visualization analysis and design.
CRC press.
Pe
˜
na-Araya, V., Bezerianos, A., and Pietriga, E. (2020).
A comparison of geographical propagation visualiza-
tions. In Proceedings of the 2020 CHI Conference on
Human Factors in Computing Systems, pages 1–14.
Phan, D., Xiao, L., Yeh, R., and Hanrahan, P. (2005). Flow
map layout. In IEEE Symposium on Information Visu-
alization, 2005. INFOVIS 2005., pages 219–224.
Sch
¨
ottler, S., Yang, Y., Pfister, H., and Bach, B. (2021).
Visualizing and interacting with geospatial networks:
A survey and design space. In Computer Graphics
Forum, volume 40, pages 5–33. Wiley Online Library.
Tobler, W. R. (1987). Experiments in migration mapping by
computer. The American Cartographer, 14(2):155–
163.
van den Elzen, S. and van Wijk, J. J. (2014). Multivari-
ate network exploration and presentation: From de-
tail to overview via selections and aggregations. IEEE
Transactions on Visualization and Computer Graph-
ics, 20(12):2310–2319.
Vanhulst, P., Evequoz, F., Tuor, R., and Lalanne, D. (2019).
A descriptive attribute-based framework for annota-
tions in data visualization. In Bechmann, D., Chessa,
M., Cl
´
audio, A. P., Imai, F., Kerren, A., Richard, P.,
Telea, A., and Tremeau, A., editors, Computer Vision,
Imaging and Computer Graphics Theory and Appli-
cations, pages 143–166, Cham. Springer International
Publishing.
Vanhulst, P., Tuor, R.,
´
Ev
´
equoz, F., and Lalanne, D. (2021).
Colvis—a structured annotation acquisition system
for data visualization. Information, 12(4).
Von Landesberger, T., Brodkorb, F., Roskosch, P., An-
drienko, N., Andrienko, G., and Kerren, A. (2015).
Mobilitygraphs: Visual analysis of mass mobility
dynamics via spatio-temporal graphs and clustering.
IEEE transactions on visualization and computer
graphics, 22(1):11–20.
Yalc¸ın, M. A., Elmqvist, N., and Bederson, B. B. (2018).
Keshif: Rapid and expressive tabular data exploration
for novices. IEEE Transactions on Visualization and
Computer Graphics, 24(8):2339–2352.
Yang, Y., Dwyer, T., Goodwin, S., and Marriott, K. (2016).
Many-to-many geographically-embedded flow visual-
isation: An evaluation. IEEE transactions on visual-
ization and computer graphics, 23(1):411–420.
IVAPP 2024 - 15th International Conference on Information Visualization Theory and Applications
636