Hastie, T., Tibshirani, R., Friedman, J. H., and Friedman,
J. H. (2009). The elements of statistical learning: data
mining, inference, and prediction, volume 2. Springer.
Hoffman, K. (2019). Programming webassembly with rust:
unified development for web, mobile, and embedded
applications. Programming WebAssembly with Rust,
pages 1–220.
Kim, M., Jang, H., and Shin, Y. (2022). Avengers, Assem-
ble! survey of WebAssembly security solutions. In
Proceedings of the 15th International Conference on
Cloud Computing, pages 543–553, Barcelona, Spain.
IEEE.
Lam, A. (2005). New ips to boost security, reliability and
performance of the campus network. Newsletter of
Computing Services Center.
Lehmann, D. and Pradel, M. (2019). Wasabi: A frame-
work for dynamically analyzing WebAssembly. In
Proceedings of the 24th International Conference on
Architectural Support for Programming Languages and
Operating Systems, pages 1045–1058, Providence, RI,
USA. ACM.
Lemos, R., Heinrich, T., Maziero, C. A., and Will, N. C.
(2022). Is it safe? identifying malicious apps through
the use of metadata and inter-process communication.
In Proceedings of the 16th IEEE International Systems
Conference, pages 1–8. IEEE.
Lemos, R., Heinrich, T., Will, N. C., Obelheiro, R. R., and
Maziero, C. A. (2023). Inspecting binder transactions
to detect anomalies in android. In Proceedings of the
17th Annual IEEE International Systems Conference,
Vancouver, BC, Canada. IEEE.
Li, J., Zhang, J., Pang, N., and Qin, X. (2018). Weighted
outlier detection of high-dimensional categorical data
using feature grouping. IEEE Transactions on Systems,
Man, and Cybernetics: Systems, 50(11):4295–4308.
Liang, H., Pei, X., Jia, X., Shen, W., and Zhang, J. (2018).
Fuzzing: State of the art. IEEE Transactions on Relia-
bility, 67(3):1199–1218.
Liao, Y. and Vemuri, V. R. (2002). Using text categorization
techniques for intrusion detection. In USENIX Security
Symposium, volume 12, pages 51–59.
Liu, M., Xue, Z., Xu, X., Zhong, C., and Chen, J. (2018).
Host-based intrusion detection system with system
calls: Review and future trends. ACM Computing
Surveys, 51(5):98.
Markman, A. and Ross, B. (2003). Category use and cate-
gory learning. Psychological bulletin, 129:592–613.
Ménétrey, J., Pasin, M., Felber, P., and Schiavoni, V. (2021).
Twine: An embedded trusted runtime for WebAssem-
bly. In Proceedings of the 37th International Confer-
ence on Data Engineering, pages 205–216, Chania,
Greece. IEEE.
Mishra, P., Varadharajan, V., Tupakula, U., and Pilli, E. S.
(2018). A detailed investigation and analysis of using
machine learning techniques for intrusion detection.
IEEE communications surveys & tutorials, 21(1):686–
728.
Molnar, C. (2020). Interpretable machine learning. Lulu.
com.
Musch, M., Wressnegger, C., Johns, M., and Rieck, K.
(2019). New kid on the Web: A study on the preva-
lence of WebAssembly in the wild. In Proceedings
of the 16th International Conference on Detection of
Intrusions and Malware, and Vulnerability Assessment,
pages 23–42, Gothenburg, Sweden. Springer.
Powers, D. and Xie, Y. (2008). Statistical methods for cate-
gorical data analysis. Emerald Group Publishing.
Qiang, W., Dong, Z., and Jin, H. (2018). Se-Lambda: Se-
curing privacy-sensitive serverless applications using
SGX enclave. In Proceedings of the 14th International
Conference on Security and Privacy in Communication
Systems, pages 451–470, Singapore. Springer.
Romano, A., Lehmann, D., Pradel, M., and Wang, W. (2022).
Wobfuscator: Obfuscating JavaScript malware via op-
portunistic translation to WebAssembly. In Proceed-
ings of the 43rd Symposium on Security and Privacy,
pages 1574–1589, San Francisco, CA, USA. IEEE.
Romano, A. and Wang, W. (2020). Wasim: Understanding
WebAssembly applications through classification. In
Proceedings of the 35th International Conference on
Automated Software Engineering, pages 1321–1325,
Melbourne, Australia. IEEE.
Stallings, W., Brown, L., Bauer, M. D., and Bhattacharjee,
A. K. (2012). Computer security: principles and prac-
tice. Pearson Education Upper Saddle River, NJ, USA.
Stiévenart, Q. and De Roover, C. (2020). Compositional
information flow analysis for WebAssembly programs.
In Proceedings of the 20th International Working Con-
ference on Source Code Analysis and Manipulation,
pages 13–24, Adelaide, Australia. IEEE.
Stiévenart, Q. (2023). Sac 2022 dataset. https://figshare.co
m/articles/dataset/SAC_2022_Dataset/17297477.
Taha, A. and Hadi, A. S. (2019). Anomaly detection meth-
ods for categorical data: A review. ACM Computing
Surveys (CSUR), 52(2):1–35.
WasmEdge (2023). WasmEdgeRuntime. https://github.com
/WasmEdge/WasmEdge.
WebAssembly (2023). Wasi tests. https://github.com/Web
Assembly/wasi-testsuite.
Wu, S. and Wang, S. (2011). Parameter-free anomaly detec-
tion for categorical data. In International Workshop on
Machine Learning and Data Mining in Pattern Recog-
nition, pages 112–126. Springer.
Yassin, W., Udzir, N. I., Muda, Z., Sulaiman, M. N., et al.
(2013). Anomaly-based intrusion detection through
k-means clustering and naives bayes classification. In
Proc. 4th Int. Conf. Comput. Informatics, ICOCI.
ICISSP 2024 - 10th International Conference on Information Systems Security and Privacy
284