
Berry, J. W., Ganti, A., Goss, K., Mayer, C. D., Onunkwo,
U., Phillips, C. A., Saia, J., and Shead, T. M. (2021).
Adapting secure multiparty computation to support
machine learning in radio frequency sensor networks.
Technical report, Sandia National Lab.(SNL-NM), Al-
buquerque, NM (United States).
Deng, M., Wuyts, K., Scandariato, R., Preneel, B., and
Joosen, W. (2011). A privacy threat analysis frame-
work: supporting the elicitation and fulfillment of
privacy requirements. Requirements Engineering,
16(1):3–32.
European Parliament and Council of European Union
(2016). Regulation (eu) 2016/679 of the european
parliament and of the council of 27 april 2016 on the
protection of natural persons with regard to the pro-
cessing of personal data and on the free movement of
such data, and repealing directive 95/46/ec (general
data protection regulation). Official Journal of the Eu-
ropean Union, L 119, 4.5.2016, p. 1–88.
Fraunhofer IESE (2018). Mydata control technologies.
https://www.mydata-control.de/.
Garrido, G. M., Sedlmeir, J., Uluda
˘
g,
¨
O., Alaoui, I. S.,
Luckow, A., and Matthes, F. (2022). Revealing the
landscape of privacy-enhancing technologies in the
context of data markets for the iot: A systematic lit-
erature review. Journal of Network and Computer Ap-
plications, page 103465.
Goldreich, O., Micali, S., and Wigderson, A. (1987). How
to play any mental game. In Proceedings of the nine-
teenth annual ACM conference on Theory of comput-
ing - STOC ’87, New York, New York, USA. ACM
Press.
Jung, C., D
¨
orr, J., Otto, B., Ten Hompel, M., and Wrobel, S.
(2022). Data usage control. Designing Data Spaces:
The Ecosystem Approach to Competitive Advantage,
pages 129–146.
Jung, C., Eitel, A., and Schwarz, R. (2014). Enhancing
cloud security with context-aware usage control poli-
cies. GI-Jahrestagung, 211:50.
Kalkman, S., van Delden, J., Banerjee, A., Tyl, B., Mostert,
M., and van Thiel, G. (2022). Patients’ and public
views and attitudes towards the sharing of health data
for research: a narrative review of the empirical evi-
dence. Journal of Medical Ethics, 48(1):3–13.
Keller, M. (2020). Mp-spdz: A versatile framework for
multi-party computation. In Proceedings of the 2020
ACM SIGSAC conference on computer and communi-
cations security, pages 1575–1590.
Koch, K., Krenn, S., Marc, T., More, S., and Ramacher, S.
(2022a). Kraken: a privacy-preserving data market for
authentic data. In Proceedings of the 1st International
Workshop on Data Economy, pages 15–20.
Koch, M., Krohmer, D., Naab, M., Rost, D., and Trapp, M.
(2022b). A matter of definition: Criteria for digital
ecosystems. Digital Business, 2(2):100027.
Kumar, A. V., Sujith, M. S., Sai, K. T., Rajesh, G., and
Yashwanth, D. J. S. (2020). Secure multiparty com-
putation enabled e-healthcare system with homomor-
phic encryption. In IOP Conference Series: Materials
Science and Engineering, volume 981, page 022079.
Lauf, F., zum Felde, H. M., Kl
¨
otgen, M., Brandst
¨
adter,
R., and Sch
¨
onborn, R. (2022). Sovereignly donating
medical data as a patient: A technical approach. In
HEALTHINF, pages 623–630.
OASIS Standard (2013). extensible access control markup
language (xacml) version 3.0. A:(22 January 2013).
URl: http://docs.oasis-open.org/xacml/3.0/xacml-3.0-
core-spec-os-en.html.
Otto, B., Lohmann, S., Auer, S., et al. (2017). Reference
architecture model for the industrial data space.
Parvinen, P. (2020). Advancing data monetization and the
creation of data-based business models. Communi-
cations of the association for information systems,
47(1):2.
Pretschner, A., Hilty, M., Sch
¨
utz, F., Schaefer, C., and Wal-
ter, T. (2008). Usage control enforcement: Present and
future. IEEE Security & Privacy, 6(4):44–53.
Seni
ˇ
car, V., Jerman-Bla
ˇ
zi
ˇ
c, B., and Klobu
ˇ
car, T. (2003).
Privacy-enhancing technologies—approaches and de-
velopment. Computer Standards & Interfaces,
25(2):147–158.
Singh, J., Bacon, J., and Eyers, D. (2014). Policy en-
forcement within emerging distributed, event-based
systems. In Proceedings of the 8th ACM Interna-
tional Conference on Distributed Event-Based Sys-
tems, pages 246–255.
Thapa, C. and Camtepe, S. (2021). Precision health data:
Requirements, challenges and existing techniques for
data security and privacy. Computers in biology and
medicine, 129:104130.
Veeningen, M., Chatterjea, S., Horv
´
ath, A. Z., Spindler, G.,
Boersma, E., van der SPEK, P., van der Gali
¨
en, O.,
Gutteling, J., Kraaij, W., and Veugen, T. (2018). En-
abling analytics on sensitive medical data with secure
multi-party computation. In MIE, pages 76–80.
Wang, X., Malozemoff, A. J., and Katz, J. (2016). Emp-
toolkit: Efficient multiparty computation toolkit.
Yao, A. C. (1982). Protocols for secure computations. In
23rd Annual Symposium on Foundations of Computer
Science (sfcs 1982). IEEE.
Zrenner, J., M
¨
oller, F. O., Jung, C., Eitel, A., and Otto, B.
(2019). Usage control architecture options for data
sovereignty in business ecosystems. Journal of Enter-
prise Information Management, 32(3):477–495.
Policy-Driven XACML-Based Architecture for Dynamic Enforcement of Multiparty Computation
89