
REFERENCES
Afifi, M. and Abuolaim, A. (2021). Semi-supervised raw-
to-raw mapping. arXiv preprint arXiv:2106.13883.
Dai, L., Liu, X., Li, C., and Chen, J. (2020). Awnet: Atten-
tive wavelet network for image isp. In European Con-
ference on Computer Vision, pages 185–201. Springer.
Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-
Fei, L. (2009). Imagenet: A large-scale hierarchical
image database. In 2009 IEEE conference on com-
puter vision and pattern recognition, pages 248–255.
Ieee.
Ershov, E., Savchik, A., Semenkov, I., Bani
´
c, N., Belokopy-
tov, A., Senshina, D., Ko
ˇ
s
ˇ
cevi
´
c, K., Suba
ˇ
si
´
c, M., and
Lon
ˇ
cari
´
c, S. (2020). The cube++ illumination estima-
tion dataset. IEEE Access, 8:227511–227527.
Ganin, Y. and Lempitsky, V. (2015). Unsupervised do-
main adaptation by backpropagation. In International
conference on machine learning, pages 1180–1189.
PMLR.
Ganin, Y., Ustinova, E., Ajakan, H., Germain, P.,
Larochelle, H., Laviolette, F., Marchand, M., and
Lempitsky, V. (2016). Domain-adversarial training of
neural networks. The journal of machine learning re-
search, 17(1):2096–2030.
Ignatov, A., Chiang, C.-M., Kuo, H.-K., Sycheva, A., and
Timofte, R. (2021). Learned smartphone isp on mo-
bile npus with deep learning, mobile ai 2021 chal-
lenge: Report. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition
(CVPR) Workshops, pages 2503–2514.
Ignatov, A., Timofte, R., Ko, S.-J., Kim, S.-W., Uhm, K.-H.,
Ji, S.-W., Cho, S.-J., Hong, J.-P., Mei, K., Li, J., et al.
(2019). Aim 2019 challenge on raw to rgb mapping:
Methods and results. In 2019 IEEE/CVF International
Conference on Computer Vision Workshop (ICCVW),
pages 3584–3590. IEEE.
Ignatov, A., Timofte, R., Zhang, Z., Liu, M., Wang, H.,
Zuo, W., Zhang, J., Zhang, R., Peng, Z., Ren, S., et al.
(2020a). Aim 2020 challenge on learned image sig-
nal processing pipeline. In European Conference on
Computer Vision, pages 152–170. Springer.
Ignatov, A., Van Gool, L., and Timofte, R. (2020b). Re-
placing mobile camera isp with a single deep learning
model. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition Work-
shops, pages 536–537.
Karaimer, H. C. and Brown, M. S. (2016). A software plat-
form for manipulating the camera imaging pipeline.
In European Conference on Computer Vision, pages
429–444. Springer.
Medioni, G. and Dickinson, S. (2016). Synthesis lectures
on computer vision.
Mertens, T., Kautz, J., and Van Reeth, F. (2009). Expo-
sure fusion: A simple and practical alternative to high
dynamic range photography. In Computer graphics
forum, volume 28, pages 161–171. Wiley Online Li-
brary.
Motiian, S., Jones, Q., Iranmanesh, S., and Doretto, G.
(2017). Few-shot adversarial domain adaptation. Ad-
vances in neural information processing systems, 30.
Pei, Z., Cao, Z., Long, M., and Wang, J. (2018). Multi-
adversarial domain adaptation. In Thirty-second AAAI
conference on artificial intelligence.
Prabhakar, K. R., Vinod, V., Sahoo, N. R., and Babu,
R. V. (2023). Few-shot domain adaptation for
low light raw image enhancement. arXiv preprint
arXiv:2303.15528.
Ramanath, R., Snyder, W. E., Yoo, Y., and Drew, M. S.
(2005). Color image processing pipeline. IEEE Signal
Processing Magazine, 22(1):34–43.
Ronneberger, O., Fischer, P., and Brox, T. (2015). U-net:
Convolutional networks for biomedical image seg-
mentation. In International Conference on Medical
image computing and computer-assisted intervention,
pages 234–241. Springer.
Schwartz, E., Giryes, R., and Bronstein, A. M. (2018).
Deepisp: Toward learning an end-to-end image pro-
cessing pipeline. IEEE Transactions on Image Pro-
cessing, 28(2):912–923.
Shang, J., Niu, C., Huang, J., Zhou, Z., Yang, J., Xu, S., and
Yang, L. (2022). Few-shot domain adaptation through
compensation-guided progressive alignment and bias
reduction. Applied Intelligence, pages 1–17.
Simonyan, K. and Zisserman, A. (2014). Very deep con-
volutional networks for large-scale image recognition.
arXiv preprint arXiv:1409.1556.
Truong, P., Danelljan, M., Van Gool, L., and Timofte, R.
(2021). Learning accurate dense correspondences and
when to trust them. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recogni-
tion, pages 5714–5724.
Wang, Z., Simoncelli, E. P., and Bovik, A. C. (2003). Mul-
tiscale structural similarity for image quality assess-
ment. In The Thrity-Seventh Asilomar Conference on
Signals, Systems & Computers, 2003, volume 2, pages
1398–1402. Ieee.
Yue, X., Zheng, Z., Zhang, S., Gao, Y., Darrell, T., Keutzer,
K., and Vincentelli, A. S. (2021). Prototypical cross-
domain self-supervised learning for few-shot unsu-
pervised domain adaptation. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition (CVPR), pages 13834–13844.
Learning End-to-End Deep Learning Based Image Signal Processing Pipeline Using a Few-Shot Domain Adaptation
263