
the IEEE conference on computer vision and pattern
recognition, pages 2704–2713.
Jacob, B., Warden, P., and Guney, M. (2017). gemm-
lowp: a small self-contained low-precision
gemm library.(2017). URL https://github.
com/google/gemmlowp.
Kingma, D. P. and Ba, J. (2014). Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.
Kirkpatrick, J., Pascanu, R., Rabinowitz, N., Veness, J.,
Desjardins, G., Rusu, A. A., Milan, K., Quan, J.,
Ramalho, T., Grabska-Barwinska, A., et al. (2017).
Overcoming catastrophic forgetting in neural net-
works. Proceedings of the national academy of sci-
ences, 114(13):3521–3526.
Krizhevsky, A., Hinton, G., et al. (2009). Learning multiple
layers of features from tiny images.
Le, Y. and Yang, X. (2015). Tiny imagenet visual recogni-
tion challenge. CS 231N, 7(7):3.
Lin, J., Zhu, L., Chen, W.-M., Wang, W.-C., Gan, C., and
Han, S. (2022). On-device training under 256kb mem-
ory. Advances in Neural Information Processing Sys-
tems, 35:22941–22954.
Liu, Z., Shen, Z., Savvides, M., and Cheng, K.-T. (2020).
Reactnet: Towards precise binary neural network with
generalized activation functions. In Computer Vision–
ECCV 2020: 16th European Conference, Glasgow,
UK, August 23–28, 2020, Proceedings, Part XIV 16,
pages 143–159. Springer.
Liu, Z., Wu, B., Luo, W., Yang, X., Liu, W., and Cheng, K.-
T. (2018). Bi-real net: Enhancing the performance of
1-bit cnns with improved representational capability
and advanced training algorithm. In Proceedings of
the European conference on computer vision (ECCV),
pages 722–737.
Lomonaco, V. and Maltoni, D. (2017). Core50: a new
dataset and benchmark for continuous object recog-
nition. In Conference on robot learning, pages 17–26.
PMLR.
Lomonaco, V., Maltoni, D., and Pellegrini, L. (2020).
Rehearsal-free continual learning over small non-iid
batches. In CVPR Workshops, volume 1, page 3.
Martinez, B., Yang, J., Bulat, A., and Tzimiropou-
los, G. (2020). Training binary neural networks
with real-to-binary convolutions. arXiv preprint
arXiv:2003.11535.
Masana, M., Liu, X., Twardowski, B., Menta, M., Bag-
danov, A. D., and Van De Weijer, J. (2022). Class-
incremental learning: survey and performance eval-
uation on image classification. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence,
45(5):5513–5533.
Mohamed, E. (2020). The relation of artificial intelligence
with internet of things: A survey. Journal of Cyberse-
curity and Information Management, 1(1):30–24.
Nadalini, D., Rusci, M., Benini, L., and Conti, F. (2023).
Reduced precision floating-point optimization for
deep neural network on-device learning on microcon-
trollers. arXiv preprint arXiv:2305.19167.
Nadalini, D., Rusci, M., Tagliavini, G., Ravaglia, L.,
Benini, L., and Conti, F. (2022). Pulp-trainlib: En-
abling on-device training for risc-v multi-core mcus
through performance-driven autotuning. In Interna-
tional Conference on Embedded Computer Systems,
pages 200–216. Springer.
Parisi, G. I., Kemker, R., Part, J. L., Kanan, C., and
Wermter, S. (2019). Continual lifelong learning with
neural networks: A review. Neural networks, 113.
Pellegrini, L., Graffieti, G., Lomonaco, V., and Maltoni, D.
(2020). Latent replay for real-time continual learn-
ing. In 2020 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pages 10203–
10209. IEEE.
Qin, H., Gong, R., Liu, X., Bai, X., Song, J., and Sebe, N.
(2020). Binary neural networks: A survey. Pattern
Recognition, 105:107281.
Rastegari, M., Ordonez, V., Redmon, J., and Farhadi, A.
(2016). Xnor-net: Imagenet classification using bi-
nary convolutional neural networks. In European con-
ference on computer vision, pages 525–542. Springer.
Ravaglia, L., Rusci, M., Nadalini, D., Capotondi, A., Conti,
F., and Benini, L. (2021). A tinyml platform for
on-device continual learning with quantized latent re-
plays. IEEE Journal on Emerging and Selected Topics
in Circuits and Systems, 11(4):789–802.
Ren, H., Anicic, D., and Runkler, T. A. (2021). Tinyol:
Tinyml with online-learning on microcontrollers. In
2021 International Joint Conference on Neural Net-
works (IJCNN), pages 1–8. IEEE.
Vitter, J. S. (1985). Random sampling with a reser-
voir. ACM Transactions on Mathematical Software
(TOMS), 11(1):37–57.
Vorabbi, L., Maltoni, D., and Santi, S. (2023a). On-device
learning with binary neural networks. arXiv preprint
arXiv:2308.15308.
Vorabbi, L., Maltoni, D., and Santi, S. (2023b). Optimizing
data-flow in binary neural networks.
VISAPP 2024 - 19th International Conference on Computer Vision Theory and Applications
36