
Yotova for annotating the SAM and DMM datasets
and preparing the ”Number of instances” tables.
REFERENCES
Burie, J.-C., Coustaty, M., Hadi, S., Kesiman, M. W. A.,
Ogier, J.-M., Paulus, E., Sok, K., Sunarya, I. M. G.,
and Valy, D. (2016). ICFHR competition on the anal-
ysis of handwritten text in images of balinese palm
leaf manuscripts. In 15th International Conference
on Frontiers in Handwriting Recognition, pages 596–
601.
Dai, J., Li, Y., He, K., and Sun, J. (2016). R-fcn: Object de-
tection via region-based fully convolutional networks.
Advances in neural information processing systems,
29.
En, S., Nicolas, S., Petitjean, C., Jurie, F., and Heutte,
L. (2016a). New public dataset for spotting patterns
in medieval document images. Journal of Electronic
Imaging, 26(1):1 – 15.
En, S., Petitjean, C., Nicolas, S., and Heutte, L. (2016b).
A scalable pattern spotting system for historical docu-
ments. Pattern Recognition, 54:149 – 161.
Everingham, M., Van Gool, L., Williams, C. K., Winn, J.,
and Zisserman, A. (2010). The pascal visual object
classes (voc) challenge. In International Conference
on Computer Vision, pages 404–417.
He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep resid-
ual learning for image recognition. In Proceedings of
the IEEE Conference on Computer Vision and Pattern
Recognition, pages 770–778.
Jiao, L., Zhang, F., Liu, F., Yang, S., Li, L., Feng, Z., and
Qu, R. (2019). A survey of deep learning-based object
detection. IEEE access, 7:128837–128868.
Le, V. P., Nayef, N., Visani, M., Ogier, J.-M., and De Tran,
C. (2014). Document retrieval based on logo spotting
using key-point matching. In 2014 22nd international
conference on pattern recognition, pages 3056–3061.
IEEE.
Li, X., Grandvalet, Y., Davoine, F., Cheng, J., Cui, Y.,
Zhang, H., Belongie, S., Tsai, Y.-H., and Yang, M.-
H. (2020). Transfer learning in computer vision tasks:
Remember where you come from. Image and Vision
Computing, 93:103853.
Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P.,
Ramanan, D., Doll
´
ar, P., and Zitnick, C. L. (2014).
Microsoft coco: Common objects in context. In Euro-
pean Conference on Computer Vision, pages 740–755.
Springer.
Liu, L., Ouyang, W., Wang, X., Fieguth, P., Chen, J., Liu,
X., and Pietik
¨
ainen, M. (2020). Deep learning for
generic object detection: A survey. Int. journal of
computer vision, 128(2):261–318.
Mohammed, H. (2023a). Dataset of drawings in medieval
manuscripts (dmm).
Mohammed, H. (2023b). Dataset of seals in arabic
manuscripts (sam).
Mohammed, H. (2023c). Model Parameters of FASTER
ResNet and EfficientDet Model Parameters of
FASTER ResNet and EfficientDet.
Mohammed, H. and Ciotti, G. (2023). Dataset of words in
palm-leaf manuscripts (wpm).
Mohammed, H., M
¨
argner, V., and Ciotti, G. (2021).
Learning-free pattern detection for manuscript re-
search. International Journal on Document Analysis
and Recognition (IJDAR), 24(3):167–179.
Ozge Unel, F., Ozkalayci, B. O., and Cigla, C. (2019). The
power of tiling for small object detection. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition Workshops, pages 0–0.
Redmon, J., Divvala, S., Girshick, R., and Farhadi, A.
(2016). You only look once: Unified, real-time object
detection. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 779–
788.
Ren, S., He, K., Girshick, R., and Sun, J. (2017). Faster r-
cnn: Towards real-time object detection with region
proposal networks. IEEE Transactions on Pattern
Analysis & Machine Intelligence, 39(06):1137–1149.
Talukdar, J., Gupta, S., Rajpura, P. S., and Hegde, R. S.
(2018). Transfer learning for object detection using
state-of-the-art deep neural networks. In 2018 5th In-
ternational Conference on Signal Processing and In-
tegrated Networks (SPIN), pages 78–83.
Tan, M., Pang, R., and Le, Q. V. (2020). Efficientdet: Scal-
able and efficient object detection. In Proceedings
of the IEEE/CVF conference on computer vision and
pattern recognition, pages 10778–10787.
Tian, Y., Li, B., Chen, C., Fu, Y., and Huang, Q. (2018).
Tiny object detection in dense crowds. In Proceed-
ings of the European Conference on Computer Vision
(ECCV), pages 497–513.
van Lit, L. C. (2020). Seals from the staatsbibliothek zu
berlin and their automated detection.
Wiggers, K. L., Britto, A. S., Heutte, L., Koerich, A. L.,
and Oliveira, L. S. (2019). Image retrieval and pat-
tern spotting using siamese neural network. In 2019
International Joint Conference on Neural Networks
(IJCNN), pages 1–8. IEEE.
Yarlagadda, P., Monroy, A., Carque, B., and Ommer, B.
(2011). Recognition and analysis of objects in me-
dieval images. In Koch, R. and Huang, F., editors,
Computer Vision – ACCV 2010 Workshops, pages
296–305, Berlin, Heidelberg. Springer Berlin Heidel-
berg.
Zaidi, S. S. A., Ansari, M. S., Aslam, A., Kanwal, N., As-
ghar, M., and Lee, B. (2022). A survey of modern
deep learning based object detection models. Digital
Signal Processing, page 103514.
´
Ubeda, I., Saavedra, J. M., Nicolas, S., Petitjean, C., and
Heutte, L. (2020). Improving pattern spotting in his-
torical documents using feature pyramid networks.
Pattern Recognition Letters, 131:398 – 404.
ICPRAM 2024 - 13th International Conference on Pattern Recognition Applications and Methods
612