Anderson, P., Wu, Q., Teney, D., Bruce, J., Johnson, M.,
S
¨
underhauf, N., Reid, I., Gould, S., and Van Den Hen-
gel, A. (2018b). Vision-and-language navigation: In-
terpreting visually-grounded navigation instructions
in real environments. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition,
pages 3674–3683.
Bai, S., Wang, J., Chen, F., and Englot, B. (2016).
Information-theoretic exploration with bayesian op-
timization. In 2016 IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems (IROS), pages
1816–1822. IEEE.
Batra, D., Gokaslan, A., Kembhavi, A., Maksymets, O.,
Mottaghi, R., Savva, M., Toshev, A., and Wijmans,
E. (2020). Objectnav revisited: On evaluation of em-
bodied agents navigating to objects. arXiv preprint
arXiv:2006.13171.
Cadena, C., Carlone, L., Carrillo, H., Latif, Y., Scaramuzza,
D., Neira, J., Reid, I., and Leonard, J. J. (2016). Past,
present, and future of simultaneous localization and
mapping: Toward the robust-perception age. IEEE
Transactions on robotics, 32(6):1309–1332.
Chang, A., Dai, A., Funkhouser, T., Halber, M., Niessner,
M., Savva, M., Song, S., Zeng, A., and Zhang, Y.
(2017). Matterport3d: Learning from rgb-d data in in-
door environments. arXiv preprint arXiv:1709.06158.
Chaplot, D. S., Gandhi, D., Gupta, S., Gupta, A., and
Salakhutdinov, R. (2020a). Learning to explore using
active neural slam. arXiv preprint arXiv:2004.05155.
Chaplot, D. S., Gandhi, D. P., Gupta, A., and Salakhut-
dinov, R. R. (2020b). Object goal navigation using
goal-oriented semantic exploration. Advances in Neu-
ral Information Processing Systems, 33:4247–4258.
Chen, T., Gupta, S., and Gupta, A. (2019). Learning
exploration policies for navigation. arXiv preprint
arXiv:1903.01959.
Chentanez, N., Barto, A., and Singh, S. (2004). Intrinsically
motivated reinforcement learning. Advances in neural
information processing systems, 17.
Dhiraj, G., Pinto, L., and Gupta, A. (2017). Learning to fly
by crashing. In IROS.
Fu, J., Co-Reyes, J., and Levine, S. (2017). Ex2: Explo-
ration with exemplar models for deep reinforcement
learning. Advances in neural information processing
systems, 30.
Gupta, S., Davidson, J., Levine, S., Sukthankar, R., and Ma-
lik, J. (2017). Cognitive mapping and planning for
visual navigation. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition,
pages 2616–2625.
Hartley, R. and Zisserman, A. (2003). Multiple view geom-
etry in computer vision. Cambridge university press.
He, K., Gkioxari, G., Doll
´
ar, P., and Girshick, R. (2017).
Mask r-cnn. In Proceedings of the IEEE international
conference on computer vision, pages 2961–2969.
He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep resid-
ual learning for image recognition. In 2016 IEEE Con-
ference on Computer Vision and Pattern Recognition
(CVPR), pages 770–778.
Henriques, J. F. and Vedaldi, A. (2018). Mapnet: An al-
locentric spatial memory for mapping environments.
In proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 8476–8484.
Kollar, T. and Roy, N. (2008). Trajectory optimization using
reinforcement learning for map exploration. The In-
ternational Journal of Robotics Research, 27(2):175–
196.
Kolve, E., Mottaghi, R., Han, W., VanderBilt, E., Weihs, L.,
Herrasti, A., Deitke, M., Ehsani, K., Gordon, D., Zhu,
Y., et al. (2017). Ai2-thor: An interactive 3d environ-
ment for visual ai. arXiv preprint arXiv:1712.05474.
LaValle, S. M. (2006). Planning algorithms. Cambridge
university press.
Lim, V., Rooksby, M., and Cross, E. S. (2021). Social robots
on a global stage: establishing a role for culture dur-
ing human–robot interaction. International Journal of
Social Robotics, 13(6):1307–1333.
Lin, T., Maire, M., Belongie, S. J., Hays, J., Perona, P.,
Ramanan, D., Doll
´
ar, P., and Zitnick, C. L. (2014).
Microsoft COCO: common objects in context. In
Fleet, D. J., Pajdla, T., Schiele, B., and Tuytelaars,
T., editors, Computer Vision - ECCV 2014 - 13th
European Conference, Zurich, Switzerland, Septem-
ber 6-12, 2014, Proceedings, Part V, volume 8693 of
Lecture Notes in Computer Science, pages 740–755.
Springer.
Lopes, M., Lang, T., Toussaint, M., and Oudeyer, P.-Y.
(2012). Exploration in model-based reinforcement
learning by empirically estimating learning progress.
Advances in neural information processing systems,
25.
Mirowski, P., Pascanu, R., Viola, F., Soyer, H., Ballard,
A. J., Banino, A., Denil, M., Goroshin, R., Sifre,
L., Kavukcuoglu, K., et al. (2016). Learning to
navigate in complex environments. arXiv preprint
arXiv:1611.03673.
Pathak, D., Agrawal, P., Efros, A. A., and Darrell, T. (2017).
Curiosity-driven exploration by self-supervised pre-
diction. In International conference on machine learn-
ing, pages 2778–2787. PMLR.
Ramakrishnan, S. K., Chaplot, D. S., Al-Halah, Z., Malik,
J., and Grauman, K. (2022). Poni: Potential func-
tions for objectgoal navigation with interaction-free
learning. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages
18890–18900.
Ramakrishnan, S. K., Gokaslan, A., Wijmans, E.,
Maksymets, O., Clegg, A., Turner, J., Undersander,
E., Galuba, W., Westbury, A., Chang, A. X., et al.
(2021). Habitat-matterport 3d dataset (hm3d): 1000
large-scale 3d environments for embodied ai. arXiv
preprint arXiv:2109.08238.
Sadeghi, F. and Levine, S. (2016). Cad2rl: Real single-
image flight without a single real image. arXiv
preprint arXiv:1611.04201.
Savinov, N., Dosovitskiy, A., and Koltun, V. (2018). Semi-
parametric topological memory for navigation. arXiv
preprint arXiv:1803.00653.
Finding and Navigating to Humans in Complex Environments for Assistive Tasks
251