
(2009). A novel approach for off-line arabic writer
identification based on stroke feature combination. In
2009 24th International Symposium on Computer and
Information Sciences, pages 597–600. IEEE.
Ahmed, B. Q., Hassan, Y. F., and Elsayed, A. S. (2023).
Offline text-independent writer identification using
a codebook with structural features. Plos one,
18(4):e0284680.
Al-Ma’adeed, S., Al-Kurbi, A.-A., Al-Muslih, A., Al-
Qahtani, R., and Kubisi, H. A. (2008). Writer
identification of arabic handwriting documents using
grapheme features. In 2008 IEEE/ACS International
Conference on Computer Systems and Applications.
IEEE.
Alshahrani, A. A. (2008). Arabic script and the rise of ara-
bic calligraphy. Online Submission.
Amara, N. E. B. and Bouslama, F. (2003). Classification
of arabic script using multiple sources of information:
State of the art and perspectives. Document Analysis
and Recognition, 5:195–212.
Arthur, D. and Vassilvitskii, S. (2007). K-means++ the ad-
vantages of careful seeding. In Proceedings of the
eighteenth annual ACM-SIAM symposium on Discrete
algorithms, pages 1027–1035.
Chahi, A., Ruichek, Y., Touahni, R., et al. (2019). An effec-
tive and conceptually simple feature representation for
off-line text-independent writer identification. Expert
Systems with Applications, 123:357–376.
Chen, M. J. (1996). An overview of the characteristics of
the chinese writing system. Asia Pacific Journal of
Speech, Language and Hearing, 1(1):43–54.
Djeddi, C. and Souici-Meslati, L. (2011). Artificial immune
recognition system for arabic writer identification. In
International Symposium on Innovations in Informa-
tion and Communications Technology. IEEE.
Fecker, D., Asit, A., M
¨
argner, V., El-Sana, J., and Fin-
gscheidt, T. (2014). Writer identification for histori-
cal arabic documents. pages 3050–3055, Stockholm,
Sweden. IEEE.
Guellil, I., Sa
ˆ
adane, H., Azouaou, F., Gueni, B., and Nou-
vel, D. (2021). Arabic natural language process-
ing: An overview. Journal of King Saud University-
Computer and Information Sciences, 33(5):497–507.
He, Z., You, X., and Tang, Y. Y. (2008). Writer identifica-
tion of chinese handwriting documents using hidden
Markov tree model. Pattern Recognition, 41(4):1295–
1307.
Hu, Y., Yang, W., and Chen, Y. (2014). Bag of features
approach for offline text-independent chinese writer
identification. In 2014 IEEE International Conference
on Image Processing (ICIP), pages 2609–2613. IEEE.
Kaur, N. K., Kaur, U., and Singh, D. (2014). K-Medoid
clustering algorithm-a review. Int. J. Comput. Appl.
Technol, 1(1):42–45.
Khan, F. A., Tahir, M. A., Khelifi, F., Bouridane, A., and
Almotaeryi, R. (2017). Robust off-line text indepen-
dent writer identification using bagged discrete cosine
transform features. Expert Systems with Applications,
71:404–415.
Kleber, F., Fiel, S., Diem, M., and Sablatnig, R. (2013).
CVL-database: An off-line database for writer re-
trieval, writer identification and word spotting. In
2013 12th international conference on document anal-
ysis and recognition, pages 560–564. IEEE.
Otsu, N. (1979). A threshold selection method from gray-
level histograms. IEEE Trans. Syst. Man Cybern.,
9(1):62–66.
Pechwitz, M., Maddouri, S. S., M
¨
argner, V., Ellouze, N.,
Amiri, H., et al. (2002). IFN/ENIT-database of hand-
written arabic words. In Proc. of CIFED, volume 2,
pages 127–136. Citeseer.
Rasoulzadeh, S. and BabaAli, B. (2022). Writer identifi-
cation and writer retrieval based on NetVLAD with
re-ranking. IET Biometrics, 11(1):10–22.
Semma, A., Hannad, Y., Siddiqi, I., Djeddi, C., and El Ket-
tani, M. E. Y. (2021). Writer identification using deep
learning with fast keypoints and harris corner detector.
Expert Systems with Applications, 184:115473.
Semma, A., Hannad, Y., Siddiqi, I., Lazrak, S., and El Ket-
tani, M. E. Y. (2022). Feature learning and encod-
ing for multi-script writer identification. International
Journal on Document Analysis and Recognition (IJ-
DAR), 25(2):79–93.
Su, T., Zhang, T., and Guan, D. (2007). Corpus-based
HIT-MW database for offline recognition of general-
purpose chinese handwritten text. International Jour-
nal of Document Analysis and Recognition (IJDAR),
10:27–38.
Tahsildar, M. N. (2019). Chinese language complexities
among international students in china. Education
Quarterly Reviews, 2(1):67–76.
Tan, J., Lai, J.-H., Wang, C.-D., and Feng, M.-S. (2011).
A stroke shape and structure based approach for
off-line chinese handwriting identification. Interna-
tional Journal of Intelligent Systems and Applications,
3(2):1.
Taylor, M. M. and Taylor, I. (2014). Writing and literacy in
chinese, korean and japanese. Writing and Literacy in
Chinese, Korean and Japanese, pages 1–506.
Wang, J., Chen, H.-C., Radach, R., and Inhoff, A. (1999).
Reading Chinese script: A cognitive analysis. Psy-
chology Press.
Xing, L. and Qiao, Y. (2016). Deepwriter: A multi-stream
deep CNN for text-independent writer identification.
In 2016 15th international conference on frontiers
in handwriting recognition (ICFHR), pages 584–589.
IEEE.
Xiong, Y.-J., Liu, L., Lyu, S., Wang, P. S., and Lu, Y. (2019).
Improving text-independent chinese writer identifica-
tion with the aid of character pairs. International Jour-
nal of Pattern Recognition and Artificial Intelligence,
33(02):1953001.
Xiong, Y.-J. and Lu, Y. (2017). Chinese writer identification
using contour-directional feature and character pair
similarity measurement. In 2017 14th IAPR Interna-
tional Conference on Document Analysis and Recog-
nition (ICDAR), volume 1, pages 119–124. IEEE.
Xu, Y., Chen, Y., Cao, Y., and Zhao, Y. (2021). A deep
learning method for chinese writer identification with
ICPRAM 2024 - 13th International Conference on Pattern Recognition Applications and Methods
618