variants for computer vision: History, architecture,
application, challenges and future scope. Electronics,
10:2470.
Daud, S. M. S. M., Yusof, M. Y. P. M., Heo, C. C., Khoo,
L. S., Singh, M. K. C., Mahmood, M. S., and Nawawi,
H. (2022). Applications of drone in disaster manage-
ment: A scoping review. Science & Justice, 62(1):30–
42.
Devi, N. B., Beenarani, B., and Sivanantham, E. (2023).
Satellite image detection and classification using hy-
brid segmentation and feature extraction with en-
hanced probabilistic neural network. Earth Science
Informatics, pages 1–12.
Dimitrovski, I., Kitanovski, I., Kocev, D., and Simidjievski,
N. (2023). Current trends in deep learning for earth
observation: An open-source benchmark arena for im-
age classification. ISPRS Journal of Photogrammetry
and Remote Sensing, 197:18–35.
Duan, S. and Zhao, H. (2019). Attention is all you
need for chinese word segmentation. arXiv preprint
arXiv:1910.14537.
Han, K., Wang, Y., Chen, H., Chen, X., Guo, J., Liu, Z.,
Tang, Y., Xiao, A., Xu, C., Xu, Y., et al. (2022). A
survey on vision transformer. IEEE transactions on
pattern analysis and machine intelligence, 45(1):87–
110.
Hang, R., Li, Z., Liu, Q., Ghamisi, P., and Bhattacharyya,
S. S. (2020). Hyperspectral image classification with
attention-aided cnns. IEEE Transactions on Geo-
science and Remote Sensing, 59(3):2281–2293.
Hcini, G., Jdey, I., and Ltifi, H. (2022). Improving
malaria detection using l1 regularization neural net-
work. JUCS: Journal of Universal Computer Science,
285(10).
Jamil, S., Jalil Piran, M., and Kwon, O.-J. (2023). A com-
prehensive survey of transformers for computer vi-
sion. Drones, 7(5):287.
Jdey, I., Hcini, G., and LTIFI, H. (2023). Deep learning
and machine learning for malaria detection: overview,
challenges and future directions. International Jour-
nal of Information Technology & Decision Making.
Jdey, I., Toumi, A., Dhibi, M., and Khenchaf, A. (2012a).
The contribution of fusion techniques in the recogni-
tion systems of radar targets.
Jdey, I., Toumi, A., Khenchaf, A., Dhibi, M., and Bouhlel,
M. (2012b). Fuzzy Fusion System for Radar Target
Recognition. International Journal of Computer Ap-
plications and Information Technology, 1(3):136–142.
Jiang, X., Wang, Y., Liu, W., Li, S., and Liu, J. (2019). Cap-
snet, cnn, fcn: Comparative performance evaluation
for image classification. Int. J. Mach. Learn. Comput,
9(6):840–848.
Jlassi, S., Jdey, I., and Ltifi, H. (2021). Bayesian hyper-
parameter optimization of deep neural network algo-
rithms based on ant colony optimization. In Document
Analysis and Recognition–ICDAR 2021: 16th Inter-
national Conference, Lausanne, Switzerland, Septem-
ber 5–10, 2021, Proceedings, Part III 16, pages 585–
594. Springer.
Li, G., Chen, X., Li, M., Li, W., Li, S., Guo, G., Wang, H.,
and Deng, H. (2022a). One-shot multi-object track-
ing using cnn-based networks with spatial-channel at-
tention mechanism. Optics and Laser Technology,
153:108267.
Li, T., Zhang, Z., Pei, L., and Gan, Y. (2022b). Hashformer:
Vision transformer based deep hashing for image re-
trieval. IEEE Signal Processing Letters, 29:827–831.
Mehmood, M., Shahzad, A., Zafar, B., Shabbir, A., and Ali,
N. (2022). Remote sensing image classification: A
comprehensive review and applications. Mathemati-
cal Problems in Engineering, 2022:1–24.
Pei, Y., Huang, Y., Zou, Q., Zhang, X., and Wang, S.
(2019). Effects of image degradation and degrada-
tion removal to cnn-based image classification. IEEE
transactions on pattern analysis and machine intelli-
gence, 43(4):1239–1253.
Scheibenreif, L., Hanna, J., Mommert, M., and Borth,
D. (2022). Self-supervised vision transformers for
land-cover segmentation and classification. In 2022
IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition Workshops (CVPRW), pages 1421–
1430.
Slimani, N., Jdey, I., and Kherallah, M. (2023). Per-
formance comparison of machine learning methods
based on cnn for satellite imagery classification. In
2023 9th International Conference on Control, De-
cision and Information Technologies (CoDIT), pages
185–189. IEEE.
Tiwari, D. and Nagpal, B. (2022). Keaht: A knowledge-
enriched attention-based hybrid transformer model for
social sentiment analysis. New Generation Comput-
ing, 40(4):1165–1202.
Xian, T., Li, Z., Zhang, C., and Ma, H. (2022). Dual global
enhanced transformer for image captioning. Neural
Networks, 148:129–141.
Zu, B., Wang, H., Li, J., He, Z., Li, Y., and Yin, Z.
(2023). Weighted residual self-attention graph-based
transformer for spectral–spatial hyperspectral image
classification. International Journal of Remote Sens-
ing, 44(3):852–877.
Improvement of Satellite Image Classification Using Attention-Based Vision Transformer
87