
Cazenave, T., Saffidine, A., Schofield, M. J., and
Thielscher, M. (2016). Nested monte carlo search for
two-player games. In AAAI, pages 687–693.
Cechl
´
arov
´
a, K., Romero-Medina, A., et al. (2001). Stability
in coalition formation games. International Journal of
Game Theory, 29(4):487–494.
Genheden, S., Thakkar, A., Chadimov
´
a, V., Reymond, J.-L.,
Engkvist, O., and Bjerrum, E. (2020). AiZynthFinder:
a fast, robust and flexible open-source software for
retrosynthetic planning. Journal of Cheminformatics,
12(1):70.
Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov,
M., Ronneberger, O., Tunyasuvunakool, K., Bates, R.,
ˇ
Z
´
ıdek, A., Potapenko, A., Bridgland, A., Meyer, C.,
Kohl, S. A. A., Ballard, A. J., Cowie, A., Romera-
Paredes, B., Nikolov, S., Jain, R., Adler, J., Back, T.,
Petersen, S., Reiman, D., Clancy, E., Zielinski, M.,
Steinegger, M., Pacholska, M., Berghammer, T., Bo-
denstein, S., Silver, D., Vinyals, O., Senior, A. W.,
Kavukcuoglu, K., Kohli, P., and Hassabis, D. (2021).
Highly accurate protein structure prediction with Al-
phaFold. Nature, 596(7873):583–589.
Larson, K. S. and Sandholm, T. W. (1999). Anytime coali-
tion structure generation: an average case study. In
Proceedings of the third annual conference on Au-
tonomous Agents, pages 40–47.
Mauro, N. D., Basile, T., Ferilli, S., and Esposito, F. (2010).
Coalition structure generation with grasp. In Interna-
tional Conference on Artificial Intelligence: Method-
ology, Systems, and Applications, pages 111–120.
Springer.
M
´
ehat, J. and Cazenave, T. (2010). Combining UCT and
Nested Monte Carlo Search for single-player general
game playing. IEEE Transactions on Computational
Intelligence and AI in Games, 2(4):271–277.
Portela, F. (2018). An unexpectedly effective Monte
Carlo technique for the RNA inverse folding problem.
BioRxiv, page 345587.
Poulding, S. M. and Feldt, R. (2014). Generating structured
test data with specific properties using nested Monte-
Carlo search. In GECCO, pages 1279–1286.
Poulding, S. M. and Feldt, R. (2015). Heuristic model
checking using a Monte-Carlo tree search algorithm.
In GECCO, pages 1359–1366.
Pr
¨
antare, F., Appelgren, H., and Heintz, F. (2021). Anytime
heuristic and monte carlo methods for large-scale si-
multaneous coalition structure generation and assign-
ment. In Proceedings of the AAAI Conference on Ar-
tificial Intelligence, volume 35, pages 11317–11324.
Pr
¨
antare, F. and Heintz, F. (2020). An anytime algorithm
for optimal simultaneous coalition structure genera-
tion and assignment. Autonomous Agents and Multi-
Agent Systems, 34(1):1–31.
Rahwan, T., Michalak, T., and Jennings, N. (2021). A hy-
brid algorithm for coalition structure generation. Pro-
ceedings of the AAAI Conference on Artificial Intelli-
gence, 26(1):1443–1449.
Rahwan, T., Michalak, T. P., Wooldridge, M., and Jennings,
N. R. (2015). Coalition structure generation: A sur-
vey. Artificial Intelligence, 229:139–174.
Rahwan, T., Ramchurn, S. D., Dang, V. D., Giovannucci,
A., and Jennings, N. R. (2007a). Anytime optimal
coalition structure generation. In AAAI, volume 7,
pages 1184–1190.
Rahwan, T., Ramchurn, S. D., Dang, V. D., and Jennings,
N. R. (2007b). Near-optimal anytime coalition struc-
ture generation. In IJCAI, volume 7, pages 2365–
2371.
Rahwan, T., Ramchurn, S. D., Jennings, N. R., and Giovan-
nucci, A. (2009). An anytime algorithm for optimal
coalition structure generation. Journal of artificial in-
telligence research, 34:521–567.
Roucairol, M. and Cazenave, T. (2022). Refutation of spec-
tral graph theory conjectures with monte carlo search.
In COCOON 2022.
Roucairol, M. and Cazenave, T. (2023). Solving the
hydrophobic-polar model with nested monte carlo
search. In International Conference on Computational
Collective Intelligence, pages 619–631. Springer.
Sandholm, T., Larson, K., Andersson, M., Shehory, O., and
Tohm
´
e, F. (1999). Coalition structure generation with
worst case guarantees. Artificial intelligence, 111(1-
2):209–238.
Schwind, N., Okimoto, T., Inoue, K., Hirayama, K.,
Lagniez, J.-M., and Marquis, P. (2021). On the
computation of probabilistic coalition structures. Au-
tonomous Agents and Multi-Agent Systems, 35(1):1–
38.
Sen, S. and Dutta, P. S. (2000). Searching for optimal coali-
tion structures. In Proceedings Fourth International
Conference on MultiAgent Systems, pages 287–292.
IEEE.
Shoham, Y. and Leyton-Brown, K. (2008). Multiagent sys-
tems: Algorithmic, game-theoretic, and logical foun-
dations. Cambridge University Press.
Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai,
M., Guez, A., Lanctot, M., Sifre, L., Kumaran, D.,
Graepel, T., Lillicrap, T., Simonyan, K., and Hass-
abis, D. (2018). A general reinforcement learning
algorithm that masters chess, shogi, and Go through
self-play. Science, 362(6419):1140–1144.
Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai,
M., Guez, A., Lanctot, M., Sifre, L., Kumaran, D.,
Graepel, T., Lillicrap, T. P., Simonyan, K., and Hass-
abis, D. (2017). Mastering Chess and Shogi by Self-
Play with a General Reinforcement Learning Algo-
rithm. ArXiv, abs/1712.01815.
Thrall, R. M. and Lucas, W. F. (1963). N-person games
in partition function form. Naval Research Logistics
Quarterly, 10:281–298.
Wu, F. and Ramchurn, S. D. (2020). Monte-carlo tree search
for scalable coalition formation. In Proceedings of the
29th International Joint Conference on Artificial In-
telligence (IJCAI), pages 407–413, Yokohama, Japan.
Yun Yeh, D. (1986). A dynamic programming approach to
the complete set partitioning problem. BIT Numerical
Mathematics, 26(4):467–474.
Lazy Nested Monte Carlo Search for Coalition Structure Generation
67