
metric video of human performances. IET Computer
Vision, 14:350–358(8).
Insafutdinov, E. and Dosovitskiy, A. (2018). Unsupervised
learning of shape and pose with differentiable point
clouds. Advances in neural information processing
systems, 31.
Johnson, J., Ravi, N., Reizenstein, J.and Novotny, D., Tul-
siani, S., Lassner, C., and Branson, S. (2020). Accel-
erating 3D deep learning with pytorch3d. SIGGRAPH
Asia.
Kato, H., Ushiku, Y., and Harada, T. (2018). Neural 3D
mesh renderer. In Proc. IEEE conference on computer
vision and pattern recognition.
Lai, W.-S., Huang, J.-B., Ahuja, N., and Yang, M.-H.
(2017). Deep laplacian pyramid networks for fast and
accurate super-resolution. In Proc. IEEE conference
on computer vision and pattern recognition.
Laine, S., Hellsten, J., Karras, T., Seol, Y., Lehtinen, J.,
and Aila, T. (2020). Modular primitives for high-
performance differentiable rendering. tog, 39(6).
Ledig, C., Theis, L., Husz
´
ar, F., Caballero, J., Cunningham,
A., Acosta, A., Aitken, A., Tejani, A., Johannes, T.,
Wang, Z., and Shi, W. (2017). Photo-realistic single
image super-resolution using a generative adversarial
network. Proc. IEEE conference on computer vision
and pattern recognition.
Li, T.-M., Aittala, M., Durand, F., and Lehtinen, J. (2018).
Differentiable monte carlo ray tracing through edge
sampling. tog, 37(6).
Li, Y., Tsiminaki, V., Timofte, R., Pollefeys, M., and Gool,
L. V. (2019). 3D appearance super-resolution with
deep learning. Proc. IEEE/CVF conference on com-
puter vision and pattern recognition.
Liu, S., Li, T., Chen, W., and Li, H. (2019). Soft rasterizer:
A differentiable renderer for image-based 3D reason-
ing. In Proc. IEEE/CVF Int. Conference on Computer
Vision.
Loper, M. M. and Black, M. J. (2014). OpenDR: An ap-
proximate differentiable renderer. European Confer-
ence on Computer Vision.
Lu, Z., Li, J., Liu, H., Huang, C., Zhang, L., and Zeng,
T. (2022). Transformer for single image super-
resolution. In Proc. IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition.
Maier, R., Kim, K., Cremers, D., Kautz, J., and Nießner, M.
(2017). Intrinsic3D: High-quality 3D reconstruction
by joint appearance and geometry optimization with
spatially-varying lighting. In Proc. IEEE Int. confer-
ence on computer vision.
Nimier-David, M., Vicini, D., Zeltner, T., and Jakob, W.
(2019). Mitsuba 2: A retargetable forward and inverse
renderer. tog, 38(6).
Paier, W., Hilsmann, A., and Eisert, P. (2023). Un-
supervised learning of style-aware facial animation
from real acting performances. Graphical Models,
129:101199.
Pesavento, M., Volino, M., and Hilton, A. (2021). Super-
resolution appearance transfer for 4d human perfor-
mancesmore realistic rendering results yet at a higher
computing cost are provided by differentiable ray trac-
ing methods . In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition
(CVPR) Workshops, pages 1791–1801.
Ranade, R., Liang, Y., Wang, S., Bai, D., and Lee, J. (2022).
3D texture super resolution via the rendering loss. In
IEEE Int. Conference on Acoustics, Speech and Signal
Processing (ICASSP).
Richard, A., Cherabier, I., Oswald, M. R., Tsiminaki, V.,
Pollefeys, M., and Schindler, K. (2019). Learned
multi-view texture super-resolution. Proc. Int. Con-
ference on 3D Vision (3DV).
Schreer, O., Feldmann, I., Renault, S., Zepp, M., Worchel,
M., Eisert, P., and Kauff, P. (2019). Capture and 3D
video processing of volumetric video. In Proc. Inter-
national Conference on Image Processing.
Shi, W., Caballero, J., Husz
´
ar, F., Totz, J., Aitken, A. P.,
Bishop, R., Rueckert, D., and Wang, Z. (2016). Real-
time single image and video super-resolution using an
efficient sub-pixel convolutional neural network. In
Proc. IEEE conference on computer vision and pat-
tern recognition.
Tsiminaki, V., Dong, W., Oswald, M. R., and Pollefeys, M.
(2019). Joint multi-view texture super-resolution and
intrinsic decomposition. In 30th British Machine Vi-
sion Conference (BMVC 2019).
Wang, X., Yu, K., Wu, S., Gu, J., Liu, Y., Dong, C.,
Qiao, Y., and Change Loy, C. (2018). Esrgan: En-
hanced super-resolution generative adversarial net-
works. In Proc. European conference on computer
vision (ECCV) workshops.
Wang, Z., Chen, J., and Hoi, S. C. H. (2021a). Deep learn-
ing for image super-resolution: A survey. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence,
43(10).
Wang, Z., Chen, J., and Hoi, S. C. H. (2021b). Deep learn-
ing for image super-resolution: A survey. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence,
43(10).
Yang, C.-Y., Ma, C., and Yang, M.-H. (2014). Single-image
super-resolution: A benchmark. In European confer-
ence on computer vision. Springer.
Generative Texture Super-Resolution via Differential Rendering
289