
Future work will also involve extending the exist-
ing algorithm to address the numerous applications in
streaming data in system health monitoring, cyberse-
curity, etc.
REFERENCES
Alloqmani, A., Abushark, Y. B., Khan, A. I., and Alsolami,
F. (2021). Deep learning based anomaly detection in
images: insights, challenges and recommendations.
International Journal of Advanced Computer Science
and Applications, 12(4).
Chollet, F. (2021). Deep learning with Python. Simon and
Schuster.
Haqq-Misra, J., Ashtari, R., Benford, J., Carroll-
Nellenback, J., D
¨
obler, N. A., Farah, W., Fauchez,
T. J., Gajjar, V., Grinspoon, D., Huggahalli, A., et al.
(2022). Opportunities for technosignature science in
the planetary science and astrobiology decadal survey.
arXiv preprint arXiv:2209.11685.
Kingma, D. P. and Welling, M. (2013). Auto-encoding vari-
ational bayes. arXiv preprint arXiv:1312.6114.
Kodikara, G. R. and McHenry, L. J. (2020). Machine learn-
ing approaches for classifying lunar soils. Icarus,
345:113719.
Lesnikowski, A., Bickel, V. T., and Angerhausen, D.
(2020). Unsupervised distribution learning for lu-
nar surface anomaly detection. arXiv preprint
arXiv:2001.04634.
Liu, F. T., Ting, K. M., and Zhou, Z.-H. (2008). Isolation
forest. In 2008 eighth ieee international conference
on data mining, pages 413–422. IEEE.
Loveland, R. and Amdahl, J. (2019). Far point algorithm:
active semi-supervised clustering for rare category de-
tection. In Proceedings of the 3rd International Con-
ference on Vision, Image and Signal Processing, pages
1–5.
Loveland, R. and Kaplan, N. (2022). Combining active
semi-supervised learning and rare category detection.
In Advances in Deep Learning, Artificial Intelligence
and Robotics, pages 217–229. Springer.
NASA (2023a). Lunar reconnaissance orbiter website. http
s://lunar.gsfc.nasa.gov/about.html.
NASA (2023b). Planetary data system archive website. ht
tps://pds.nasa.gov/.
Nassif, A. B., Talib, M. A., Nasir, Q., and Dakalbab, F. M.
(2021). Machine learning for anomaly detection: A
systematic review. Ieee Access, 9:78658–78700.
Pang, G., Shen, C., Cao, L., and Hengel, A. V. D. (2021).
Deep learning for anomaly detection: A review. ACM
computing surveys (CSUR), 54(2):1–38.
Rosenblatt, M. (1956). Remarks on some nonparametric
estimates of a density function. The annals of mathe-
matical statistics, pages 832–837.
Ruff, L., Kauffmann, J. R., Vandermeulen, R. A., Mon-
tavon, G., Samek, W., Kloft, M., Dietterich, T. G., and
M
¨
uller, K.-R. (2021). A unifying review of deep and
shallow anomaly detection. Proceedings of the IEEE,
109(5):756–795.
Wagner, R., Nelson, D., Plescia, J., Robinson, M., Speyerer,
E., and Mazarico, E. (2017). Coordinates of anthro-
pogenic features on the moon. Icarus, 283:92–103.
Williams, D. (2023). Table of anthropogenic impacts and
spacecraft on the moon. https://nssdc.gsfc.nasa.gov/
planetary/lunar/lunar artifact impacts.html.
Xu, X., Liu, H., Yao, M., et al. (2019). Recent progress of
anomaly detection. Complexity, 2019.
Yang, J., Xu, R., Qi, Z., and Shi, Y. (2021). Visual
anomaly detection for images: A survey. arXiv
preprint arXiv:2109.13157.
Zhang, J., Xie, Y., Li, Y., Shen, C., and Xia, Y. (2020).
Covid-19 screening on chest x-ray images using deep
learning based anomaly detection. arXiv preprint
arXiv:2003.12338, 27(10.48550).
Zhou, C. and Paffenroth, R. C. (2017). Anomaly detec-
tion with robust deep autoencoders. In Proceedings
of the 23rd ACM SIGKDD international conference
on knowledge discovery and data mining, pages 665–
674.
Zong, B., Song, Q., Min, M. R., Cheng, W., Lumezanu,
C., Cho, D., and Chen, H. (2018). Deep autoencoding
gaussian mixture model for unsupervised anomaly de-
tection. In International conference on learning rep-
resentations.
ICPRAM 2024 - 13th International Conference on Pattern Recognition Applications and Methods
640