troduction of slight displacement to the depalletizer
system is expected to reduce the freq uency of manual
recovery perf ormed by workers.
Our future work includes integrating bound ary es-
timation with deep-learning method s to avoid results
with low confidence regardless of correct object ar-
eas. Although our method reduced incorrec t p ic k-
ing, the in crease in the fre quency of slight displace-
ment caused the throughput of robot automation to
decrease. We also aim to develop more short-time re-
covery methods, focusing on causes of failed recog-
nition.
ACKNOWLEDGEMENTS
We a re gra teful to Mr. Takaharu Matsui for his fruitful
discussions. We also thank Mr. Koichi Kato for his
assistance in im plementing the software for the pro-
posed method.
REFERENCES
Aleotti, J., Baldassarri, A., Bonf`e, M., Carricato, M., Chiar-
avalli, D., Di Leva, R., Fantuzzi, C., Farsoni, S., In-
nero, G., Rizzini, D. L., Melchiorri, C., Monica, R.,
Palli, G., Rizzi, J., Sabattini, L., Sampietro, G., and
Zaccaria, F. (2021). Toward future automatic ware-
houses: An autonomous depalletizing system based
on mobile manipulation and 3d perception. Applied
Sciences (Switzerland), 11(13).
Buongiorno, D., Caramia, D., Di Ruscio, L., Longo, N.,
Panicucci, S., Di Stefano, G., Bevilacqua, V., and
Brunetti, A. (2022). Object detection for industrial
applications: Training strategies for ai-based depal-
letizer. Applied Sciences, 12(22):11581.
Caccavale, R., Arpenti, P., Paduano, G., Fontanellli, A.,
Lippiello, V., Villani, L., and Siciliano, B. (2020).
A flexible robotic depalletizing system for supermar-
ket logistics. IEEE Robotics and Automation Letters,
5(3):4471–4476.
Doliotis, P., McMurrough, C. D. , Criswell, A., Middleton,
M. B., and Rajan, S. T. (2016). A 3D perception-based
robotic manipulation system for automated truck un-
loading. IEEE International Conference on Automa-
tion Science and Engineering, 2016-Novem:262–267.
Duda, R. O . and Hart, P. E. (1972). Use of the Hough trans-
formation to detect lines and curves in pictures. Com-
munications of the ACM, 15(1):11–15.
Eto, H., Nakamoto, H., Sonoura, T., Tanaka, J., and Ogawa,
A. (2019). Development of automated high-speed de-
palletizing system for complex stacking on roll box
pallets. Journal of Advanced Mechanical Design, Sys-
tems and Manufacturing, 13(3):1–12.
Fontanelli, G. A., Paduano, G., Caccavale, R., Arpenti, P.,
Lippiello, V., Villani, L., and Siciliano, B. (2020). A
reconfigurable gripper for robotic autonomous depal-
letizing in supermarket logistics. IEEE Robotics and
Automation Letters, 5(3):4612–4617.
Girshick, R. (2015). Fast R-CNN. In Proceedings of the
IEEE international conference on computer vision,
pages 1440–1448.
He, K., Gkioxari, G., Doll´ar, P., and Girshick, R. (2017).
Mask R- CNN. In Proceedings of the IEEE Interna-
tional Conference on Computer Vision, pages 2961–
2969.
Katsoulas, D. K. and Kosmopoulos, D. I. (2001). An ef-
ficient depalletizing system based on 2D range im-
agery. Proceedings - IEEE International Conference
on Robotics and Automation, 1:305–312.
Kimura, N., Ito, K., Fuji, T., Fujimoto, K., Esaki, K.,
Beniyama, F., and Moriya, T. (2016). Mobile
dual-arm robot for automated order picking system
in warehouse containing various kinds of products.
IEEE/SICE International Symposium on System Inte-
gration, pages 332–338.
Li, J., Kang, J., Chen, Z., Cui, F., and Fan, Z. (2020).
A workpiece localization method for robotic de-
palletizing based on region growing and ppht. IEEE
Access, 8:166365–166376.
Liu, W., Anguelov, D., Erhan, D., Szegedy, C., R eed, S., Fu,
C.-Y., and Berg, A. C. (2016). SSD: Single shot multi-
box detector. In Computer Vision–ECCV 2016: 14th
European Conference, Amsterdam, The Netherlands,
Proceedings, Part I 14, pages 21–37. Springer.
Nakamoto, H., Eto, H., Sonoura, T., Tanaka, J. , and Ogawa,
A. (2016). High-speed and compact depalletizing
robot capable of handling packages stacked compli-
catedly. IEEE International Conference on Intelligent
Robots and Systems, pages 344–349.
Naumann, A., Dorr, L., Ole Salscheider, N., and Furmans,
K. (2020). Refined Plane Segmentation for Cuboid-
Shaped Objects by Leveraging Edge Detecti on. Pro-
ceedings - 19th IEEE International Conference on
Machine Learning and Applications, pages 432–437.
Redmon, J., Divvala, S., Girshick, R., and Farhadi, A.
(2016). You only look once: Unified, real-time object
detection. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 779–
788.
Stein, S. C., Schoeler, M., Papon, J., and Worgotter, F.
(2014). Object partitioning using local convexity.
Proceedings of the IEEE Computer Society Confer-
ence on Computer Vision and Pattern Recognition,
(June):304–311.
Tanaka, J., Ogawa, A., Nakamoto, H., Sonoura, T., and Eto,
H. (2020). Suction pad unit using a bellows pneumatic
actuator as a support mechanism for an end effector of
depalletizing robots. ROBOMECH Journal, 7(1):1–
30.
Yano, T., Kimura, N., and Ito, K. (2023). Surface-graph-
based 6dof object-pose estimati on for shrink-wrapped
items applicable to mixed depalletizing robots. In
VISIGRAPP (5: VISAPP), pages 503–511.
Yuen, H., Princen, J., Illingworth, J., and Kittler, J. (1990).
Comparative study of Hough transform methods f or
circle finding. Image and vision computing, 8(1):71–
77.