tration of 3-D Shapes. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 14(2):239–256.
Bleyer, M., Rhemann, C., and Rother, C. (2011). Patch-
match stereo-stereo matching with slanted support
windows. In BMVC, volume 11, pages 1–11.
Chetverikov, D., Svirko, D., Stepanov, D., and Krsek, P.
(2002). Robust Euclidean alignment of 3-D point sets:
the trimmed iterative closest point algorithm. Image
and Vision Computing, 20(12):1071–1077.
DeTone, D., Malisiewicz, T., and Rabinovich, A. (2018).
SuperPoint: Self-Supervised Interest Point Detection
and Description. In Conference on Computer Vision
and Pattern Recognition, pages 224–233.
Eggert, D. W., Lorusso, A., and Fisher, R. B. (1997). Esti-
mating 3-D Rigid Body Transformations: A Compar-
ison of Four Major Algorithms. In Computer Vision
and Pattern Recognition, 1997. Proceedings., 1997
IEEE Computer Society Conference on, pages 699–
704. IEEE.
Fischler, M. A. and Bolles, R. C. (1981). Random sample
consensus: a paradigm for model fitting with appli-
cations to image analysis and automated cartography.
Communications of the ACM, 24(6):381–395.
Furukawa, Y., Hern
´
andez, C., et al. (2015). Multi-view
stereo: A tutorial. Foundations and Trends® in Com-
puter Graphics and Vision, 9(1-2):1–148.
Golparvar-Fard, M., Pe
˜
na-Mora, F., and Savarese, S.
(2009). D4AR–a 4-dimensional augmented reality
model for automating construction progress monitor-
ing data collection, processing and communication.
Journal of information technology in construction,
14(13):129–153.
Hartley, R. and Zisserman, A. (2003). Multiple view geom-
etry in computer vision. Cambridge university press.
Hartley, R. I. (1997). In defense of the eight-point algo-
rithm. IEEE Transactions on pattern analysis and ma-
chine intelligence, 19(6):580–593.
Karsch, K., Golparvar-Fard, M., and Forsyth, D. (2014).
ConstructAide: analyzing and visualizing construc-
tion sites through photographs and building models.
ACM Transactions on Graphics (TOG), 33(6):1–11.
Khalid Masood, M., Aikala, A., Sepp
¨
anen, O., Singh, V.,
et al. (2020). Multi-Building Extraction and Align-
ment for As-Built Point Clouds: A Case Study With
Crane Cameras.
Kim, C., Ju, Y., Kim, H., and Kim, J. (2009). Resource man-
agement in civil construction using RFID technolo-
gies. In Proceedings of the 26th International Sym-
posium on Automation and Robotics in Construction
(ISARC 2009), Austin, TX, USA, volume 2427, page
105108. Citeseer.
Kim, D., Liu, M., Lee, S., and Kamat, V. (2019). Re-
mote proximity monitoring between mobile construc-
tion resources using camera-mounted UAVs. Automa-
tion in Construction.
Laurentini, A. (1994). The visual hull concept for
silhouette-based image understanding. IEEE Trans-
actions on pattern analysis and machine intelligence,
16(2):150–162.
LeCun, Y., Bengio, Y., and Hinton, G. (2015). Deep learn-
ing. Nature, 521(7553):436–444.
Longuet-Higgins, H. C. (1981). A computer algorithm for
reconstructing a scene from two projections. Nature,
293(5828):133–135.
Lowe, D. G. (2004). Distinctive image features from scale-
invariant keypoints. International journal of computer
vision, 60:91–110.
Ma, J., Jiang, X., Fan, A., Jiang, J., and Yan, J. (2021).
Image matching from handcrafted to deep features:
A survey. International Journal of Computer Vision,
129:23–79.
Mahami, H., Nasirzadeh, F., Hosseininaveh Ahmadabadian,
A., and Nahavandi, S. (2019). Automated progress
controlling and monitoring using daily site images and
building information modelling. Buildings, 9(3):70.
Oh, S.-W., Chang, H.-J., Kim, Y.-S., Lee, J., and Kim, H.-s.
(2004). An Application of PDA and Barcode Technol-
ogy for the Improvement of Information Management
in Construction Projects.
Pollefeys, M., Nist
´
er, D., Frahm, J.-M., Akbarzadeh, A.,
Mordohai, P., Clipp, B., Engels, C., Gallup, D., Kim,
S.-J., Merrell, P., et al. (2008). Detailed real-time ur-
ban 3d reconstruction from video. International Jour-
nal of Computer Vision, 78:143–167.
Rusinkiewicz, S. and Levoy, M. (2001). Efficient variants
of the ICP algorithm. In Proceedings Third Interna-
tional Conference on 3-D Digital Imaging and Mod-
eling, pages 145–152. IEEE.
Sami Ur Rehman, M., Shafiq, M. T., and Ullah, F.
(2022). Automated Computer Vision-Based Con-
struction Progress Monitoring: A Systematic Review.
Buildings, 12(7):1037.
Sarlin, P.-E., DeTone, D., Malisiewicz, T., and Rabinovich,
A. (2020). SuperGlue: Learning Feature Matching
with Graph Neural Networks. In European Confer-
ence on Computer Vision, pages 815–832.
Sch
¨
onberger, J. L. and Frahm, J.-M. (2016). Structure-
from-Motion Revisited. In Conference on Computer
Vision and Pattern Recognition (CVPR).
Sepasgozar, S., Lim, S., Shirowzhan, S., and Kim, Y. M.
(2014). Implementation of As-Built Information
Modelling Using Mobile and Terrestrial Lidar Sys-
tems. pages 876–883.
Tuttas, S., Braun, A., Borrmann, A., and Stilla, U.
(2017). Acquisition and consecutive registration
of photogrammetric point clouds for construction
progress monitoring using a 4D BIM. PFG–journal
of photogrammetry, remote sensing and geoinforma-
tion science, 85(1):3–15.
Xue, J., Hou, X., and Zeng, Y. (2021). Review of image-
based 3D reconstruction of building for automated
construction progress monitoring. Applied Sciences,
11(17):7840.
Zhang, J., Zhang, J., Mao, S., Ji, M., Wang, G., Chen,
Z., Zhang, T., Yuan, X., Dai, Q., and Fang, L.
(2021). GigaMVS: a benchmark for ultra-large-scale
gigapixel-level 3D reconstruction. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence,
44(11):7534–7550.
VISAPP 2024 - 19th International Conference on Computer Vision Theory and Applications
476