
REFERENCES
Baniukiewicz, P., Lutton, E. J., Collier, S., and Bretschnei-
der, T. (2019). Generative adversarial networks for
augmenting training data of microscopic cell images.
Frontiers in Computer Science, 1.
Beghin, A., Grenci, G., Sahni, G., Guo, S., Rajendiran, H.,
Delaire, T., Mohamad Raffi, S. B., Blanc, D., de Mets,
R., Ong, H. T., Galindo, X., Monet, A., Acharya, V.,
Racine, V., Levet, F., Galland, R., Sibarita, J.-B., and
Viasnoff, V. (2022). Automated high-speed 3d imag-
ing of organoid cultures with multi-scale phenotypic
quantification. Nature Methods, 19(7):881–892.
Caicedo, J. C., Goodman, A., Karhohs, K. W., Cimini,
B. A., Ackerman, J., Haghighi, M., Heng, C., Becker,
T., Doan, M., McQuin, C., Rohban, M., Singh, S., and
Carpenter, A. E. (2019). Nucleus segmentation across
imaging experiments: the 2018 data science bowl. Na-
ture Methods, 16(12):1247–1253.
Chen, Q. and Koltun, V. (2017). Photographic image syn-
thesis with cascaded refinement networks.
Cutler, K. J., Stringer, C., Lo, T. W., Rappez, L., Strous-
trup, N., Brook Peterson, S., Wiggins, P. A., and
Mougous, J. D. (2022). Omnipose: a high-precision
morphology-independent solution for bacterial cell
segmentation. Nature Methods, 19(11):1438–1448.
Fu, C., Arora, A., Engl, W., Sheetz, M., and Viasnoff, V.
(2022). Cooperative regulation of adherens junction
expansion through epidermal growth factor receptor
activation. Journal of Cell Science, 135(4):jcs258929.
Fu, C., Lee, S., Ho, D. J., Han, S., Salama, P., Dunn, K. W.,
and Delp, E. J. (2018). Three dimensional fluores-
cence microscopy image synthesis and segmentation.
In 2018 IEEE/CVF Conference on Computer Vision
and Pattern Recognition Workshops (CVPRW), pages
2302–23028.
Galland, R., Grenci, G., Aravind, A., Viasnoff, V., Studer,
V., and Sibarita, J.-B. (2015). 3d high- and super-
resolution imaging using single-objective spim. Na-
ture Methods, 12(7):641–644.
Goodfellow, I. J., Pouget-Abadie, J., Mirza, M., Xu, B.,
Warde-Farley, D., Ozair, S., Courville, A., and Ben-
gio, Y. (2014). Generative adversarial networks.
Han, L., Murphy, R. F., and Ramanan, D. (2020). Learning
generative models of tissue organization with super-
vised gans.
Isola, P., Zhu, J.-Y., Zhou, T., and Efros, A. A. (2018).
Image-to-image translation with conditional adversar-
ial networks.
Jensen, C. and Teng, Y. (2020). Is it time to start transition-
ing from 2d to 3d cell culture? Frontiers in Molecular
Biosciences, 7.
Kapalczynska, M., Kolenda, T., Przybyla, W., Za-
jaczkowska, M., Teresiak, A., Filas, V., Ibbs, M., Bliz-
niak, R., Luczewski, L., and Lamperska, K. (2018). 2d
and 3d cell cultures – a comparison of different types
of cancer cell cultures. Archives of Medical Science,
14(4):910–919.
Kirillov, A., Mintun, E., Ravi, N., Mao, H., Rolland, C.,
Gustafson, L., Xiao, T., Whitehead, S., Berg, A. C.,
Lo, W.-Y., Doll
´
ar, P., and Girshick, R. (2023). Seg-
ment anything.
Li, G., Liu, T., Tarokh, A., Nie, J., Guo, L., Mara, A., Hol-
ley, S., and Wong, S. T. (2007). 3d cell nuclei seg-
mentation based on gradient flow tracking. BMC Cell
Biology, 8(1):40.
Liu, Q., Gaeta, I. M., Millis, B. A., Tyska, M. J., and
Huo, Y. (2020). Gan based unsupervised segmenta-
tion: Should we match the exact number of objects.
Long, J., Yan, Z., Peng, L., and Li, T. (2021). The geometric
attention-aware network for lane detection in complex
road scenes. PLOS ONE, 16(7):1–15.
Malpica, N., de Sol
´
orzano, C. O., Vaquero, J. J., Santos,
A., Vallcorba, I., Garc
´
ıa-Sagredo, J. M., and del Pozo,
F. (1997). Applying watershed algorithms to the seg-
mentation of clustered nuclei. Cytometry, 28(4):289–
297.
Mougeot, G., Dubos, T., Chausse, F., P
´
ery, E., Grau-
mann, K., Tatout, C., Evans, D. E., and Desset, S.
(2022). Deep learning – promises for 3D nuclear
imaging: a guide for biologists. Journal of Cell Sci-
ence, 135(7):jcs258986.
Ronneberger, O., Fischer, P., and Brox, T. (2015). U-
net: Convolutional networks for biomedical image
segmentation. In Navab, N., Hornegger, J., Wells,
W. M., and Frangi, A. F., editors, Medical Image Com-
puting and Computer-Assisted Intervention – MICCAI
2015, pages 234–241, Cham. Springer International
Publishing.
Schmidt, U., Weigert, M., Broaddus, C., and Myers, G.
(2018). Cell detection with star-convex polygons.
In Frangi, A. F., Schnabel, J. A., Davatzikos, C.,
Alberola-L
´
opez, C., and Fichtinger, G., editors, Med-
ical Image Computing and Computer Assisted In-
tervention – MICCAI 2018, pages 265–273, Cham.
Springer International Publishing.
Stringer, C., Wang, T., Michaelos, M., and Pachitariu, M.
(2021). Cellpose: a generalist algorithm for cellular
segmentation. Nature Methods, 18(1):100–106.
Wang, J., Tabassum, N., Toma, T. T., Wang, Y., Gahlmann,
A., and Acton, S. T. (2022). 3D GAN image synthesis
and dataset quality assessment for bacterial biofilm.
Bioinformatics, 38(19):4598–4604.
Weigert, M., Schmidt, U., Haase, R., Sugawara, K., and
Myers, G. (2020). Star-convex polyhedra for 3d object
detection and segmentation in microscopy. In 2020
IEEE Winter Conference on Applications of Computer
Vision (WACV), pages 3655–3662, Los Alamitos, CA,
USA. IEEE Computer Society.
Wu, L., Chen, A., Salama, P., Winfree, S., Dunn, K. W.,
and Delp, E. J. (2023). Nisnet3d: three-dimensional
nuclear synthesis and instance segmentation for flu-
orescence microscopy images. Scientific Reports,
13(1):9533.
Zhu, J.-Y., Park, T., Isola, P., and Efros, A. A. (2017).
Unpaired image-to-image translation using cycle-
consistent adversarial networks. In Computer Vision
(ICCV), 2017 IEEE International Conference on.
BIOIMAGING 2024 - 11th International Conference on Bioimaging
272