![](bg8.png)
Girshick, R. (2015). Fast R-CNN. In Proceedings of the
IEEE International Conference on Computer Vision,
pages 1440–1448.
Group, I. W. et al. (2018). IEEE P2020 Automotive Imaging
White Paper.
Hnewa, M. and Radha, H. (2020). Object Detection Un-
der Rainy Conditions for Autonomous Vehicles: A
Review of State-of-the-Art and Emerging Techniques.
IEEE Signal Processing Magazine, 38(1):53–67.
Jocher, G., Chaurasia, A., Stoken, A., Borovec, J., Kwon,
Y., Michael, K., Fang, J., Yifu, Z., Wong, C., Montes,
D., et al. (2022). ultralytics/yolov5: v7. 0-YOLOv5
SOTA Realtime Instance Segmentation. Zenodo.
Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S.,
Fu, C.-Y., and Berg, A. C. (2016). SSD: Single shot
multibox detector. In Computer Vision–ECCV 2016:
14th European Conference, Amsterdam, The Nether-
lands, October 11–14, 2016, Proceedings, Part I 14,
pages 21–37. Springer.
Liu, W., Ren, G., Yu, R., Guo, S., Zhu, J., and Zhang,
L. (2022). Image-adaptive YOLO for object detec-
tion in adverse weather conditions. In Proceedings
of the AAAI Conference on Artificial Intelligence, vol-
ume 36, pages 1792–1800.
Rashed, H., Ramzy, M., Vaquero, V., El Sallab, A., Sistu,
G., and Yogamani, S. (2019). Fusemodnet: Real-time
camera and lidar based moving object detection for ro-
bust low-light autonomous driving. In Proceedings of
the IEEE/CVF International Conference on Computer
Vision Workshops, pages 0–0.
Redmon, J., Divvala, S., Girshick, R., and Farhadi, A.
(2016). You only look once: Unified, real-time ob-
ject detection. In Proceedings of the IEEE Conference
on Computer Cision and Pattern Recognition, pages
779–788.
Ren, S., He, K., Girshick, R., and Sun, J. (2015). Faster R-
CNN: Towards Real-Time Object Detection with Re-
gion Proposal Networks. Advances in neural informa-
tion processing systems, 28.
Singh, S. (2015). Critical Reasons for Crashes Investigated
in the National Motor Vehicle Crash Causation Sur-
vey. Technical report.
Stojkovic, A., Aelterman, J., Luong, H., Van Parys, H.,
and Philips, W. (2021). Highlights Analysis System
(HAnS) for Low Dynamic Range to High Dynamic
Range Conversion of Cinematic Low Dynamic Range
Content. IEEE Access, 9:43938–43969.
Talvala, E.-V., Adams, A., Horowitz, M., and Levoy,
M. (2007). Veiling Glare in High Dynamic Range
Imaging. ACM Transactions on Graphics (TOG),
26(3):37–es.
Wu, Y., He, Q., Xue, T., Garg, R., Chen, J., Veeraragha-
van, A., and Barron, J. T. (2021). How to train neu-
ral networks for flare removal. In Proceedings of the
IEEE/CVF International Conference on Computer Vi-
sion, pages 2239–2247.
Yu, B., Chen, Y., Cao, S.-Y., Shen, H.-L., and Li, J. (2022).
Three-Channel Infrared Imaging for Object Detection
in Haze. IEEE Transactions on Instrumentation and
Measurement, 71:1–13.
Yu, F., Chen, H., Wang, X., Xian, W., Chen, Y., Liu, F.,
Madhavan, V., and Darrell, T. (2020). BDD100K:
A diverse driving dataset for heterogeneous multitask
learning. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages
2636–2645.
VISAPP 2024 - 19th International Conference on Computer Vision Theory and Applications
348