
Hundman, K., Constantinou, V., Laporte, C., Colwell,
I., and Soderstrom, T. (2018). Detecting space-
craft anomalies using lstms and nonparametric dy-
namic thresholding. In Proceedings of the 24th ACM
SIGKDD international conference on knowledge dis-
covery & data mining, pages 387–395.
Kingma, D. P. and Welling, M. (2013). Auto-encoding vari-
ational bayes. arXiv preprint arXiv:1312.6114.
Kitaev, N., Kaiser, Ł., and Levskaya, A. (2020). Re-
former: The efficient transformer. arXiv preprint
arXiv:2001.04451.
Kriegel, H.-P., Kr
¨
oger, P., Schubert, E., and Zimek, A.
(2009). Outlier detection in axis-parallel subspaces
of high dimensional data. In Advances in Knowledge
Discovery and Data Mining: 13th Pacific-Asia Con-
ference, PAKDD 2009 Bangkok, Thailand, April 27-
30, 2009 Proceedings 13, pages 831–838. Springer.
Latecki, L. J., Lazarevic, A., and Pokrajac, D. (2007). Out-
lier detection with kernel density functions. In In-
ternational Workshop on Machine Learning and Data
Mining in Pattern Recognition, pages 61–75. Springer.
Lazarevic, A. and Kumar, V. (2005). Feature bagging for
outlier detection. In Proceedings of the eleventh ACM
SIGKDD international conference on Knowledge dis-
covery in data mining, pages 157–166.
Li, Z., Zhao, Y., Botta, N., Ionescu, C., and Hu, X.
(2020). Copod: copula-based outlier detection. In
2020 IEEE international conference on data mining
(ICDM), pages 1118–1123. IEEE.
Li, Z., Zhao, Y., Hu, X., Botta, N., Ionescu, C., and Chen,
G. (2022). Ecod: Unsupervised outlier detection us-
ing empirical cumulative distribution functions. IEEE
Transactions on Knowledge and Data Engineering.
Liu, B., Wang, D., Lin, K., Tan, P.-N., and Zhou, J. (2021a).
Rca: A deep collaborative autoencoder approach for
anomaly detection. In IJCAI: proceedings of the con-
ference, volume 2021, page 1505. NIH Public Access.
Liu, F. T., Ting, K. M., and Zhou, Z.-H. (2008). Isolation
forest. In 2008 eighth ieee international conference
on data mining, pages 413–422. IEEE.
Liu, S., Yu, H., Liao, C., Li, J., Lin, W., Liu, A. X., and
Dustdar, S. (2021b). Pyraformer: Low-complexity
pyramidal attention for long-range time series mod-
eling and forecasting. In International conference on
learning representations.
Mathur, A. P. and Tippenhauer, N. O. (2016). Swat: a wa-
ter treatment testbed for research and training on ics
security. In 2016 International Workshop on Cyber-
physical Systems for Smart Water Networks (CySWa-
ter), pages 31–36.
McInnes, L., Healy, J., and Melville, J. (2018). Umap: Uni-
form manifold approximation and projection for di-
mension reduction. arXiv preprint arXiv:1802.03426.
Pang, G., Cao, L., Chen, L., and Liu, H. (2018). Learning
representations of ultrahigh-dimensional data for ran-
dom distance-based outlier detection. In Proceedings
of the 24th ACM SIGKDD international conference
on knowledge discovery & data mining, pages 2041–
2050.
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V.,
Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P.,
Weiss, R., Dubourg, V., et al. (2011). Scikit-learn:
Machine learning in python. the Journal of machine
Learning research, 12:2825–2830.
Qiu, C., Pfrommer, T., Kloft, M., Mandt, S., and Rudolph,
M. (2021). Neural transformation learning for deep
anomaly detection beyond images. In International
Conference on Machine Learning, pages 8703–8714.
PMLR.
Ramaswamy, S., Rastogi, R., and Shim, K. (2000). Efficient
algorithms for mining outliers from large data sets. In
Proceedings of the 2000 ACM SIGMOD international
conference on Management of data, pages 427–438.
Ruff, L., Kauffmann, J. R., Vandermeulen, R. A., Mon-
tavon, G., Samek, W., Kloft, M., Dietterich, T. G., and
M
¨
uller, K.-R. (2021). A unifying review of deep and
shallow anomaly detection. Proceedings of the IEEE,
109(5):756–795.
Ruff, L., Vandermeulen, R., Goernitz, N., Deecke, L., Sid-
diqui, S. A., Binder, A., M
¨
uller, E., and Kloft, M.
(2018). Deep one-class classification. In International
conference on machine learning, pages 4393–4402.
PMLR.
Sch
¨
olkopf, B. and Smola, A. J. (2002). Learning with ker-
nels: support vector machines, regularization, opti-
mization, and beyond. MIT press.
Shenkar, T. and Wolf, L. (2021). Anomaly detection for
tabular data with internal contrastive learning. In In-
ternational Conference on Learning Representations.
Shyu, M.-L., Chen, S.-C., Sarinnapakorn, K., and Chang, L.
(2003). A novel anomaly detection scheme based on
principal component classifier. In Proceedings of the
IEEE foundations and new directions of data mining
workshop, pages 172–179. IEEE Press.
Su, Y., Zhao, Y., Niu, C., Liu, R., Sun, W., and Pei, D.
(2019). Robust anomaly detection for multivariate
time series through stochastic recurrent neural net-
work. In Proceedings of the 25th ACM SIGKDD inter-
national conference on knowledge discovery & data
mining, pages 2828–2837.
Tang, J., Chen, Z., Fu, A. W.-C., and Cheung, D. W. (2002).
Enhancing effectiveness of outlier detections for low
density patterns. In Advances in Knowledge Discov-
ery and Data Mining: 6th Pacific-Asia Conference,
PAKDD 2002 Taipei, Taiwan, May 6–8, 2002 Pro-
ceedings 6, pages 535–548. Springer.
Tax, D. M. and Duin, R. P. (2004). Support vector data
description. Machine learning, 54:45–66.
Van der Maaten, L. and Hinton, G. (2008). Visualizing data
using t-sne. Journal of machine learning research,
9(11).
Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, L. u., and Polosukhin,
I. (2017). Attention is all you need. In Guyon,
I., Luxburg, U. V., Bengio, S., Wallach, H., Fer-
gus, R., Vishwanathan, S., and Garnett, R., editors,
Advances in Neural Information Processing Systems,
volume 30. Curran Associates, Inc.
Benchmarking a Wide Range of Unsupervised Learning Methods for Detecting Anomaly in Blast Furnace
649