
REFERENCES
Afifi, M., Barron, J. T., LeGendre, C., Tsai, Y.-T., and
Bleibel, F. (2021). Cross-camera convolutional color
constancy. In Int. Conf. Comput. Vision, pages 1981–
1990, Montreal, QC, Canada. IEEE/CVF.
Afifi, M. and Brown, M. S. (2019). Sensor-independent illu-
mination estimation for DNN models. In Brit. Mach.
Vision Conf., Cardiff, UK. BMVA Press.
Afifi, M. and Brown, M. S. (2020). Deep white-balance
editing. In Conf. Comput. Vision Pattern Recognit.,
pages 1397–1406, Seattle, WA, USA. IEEE/CVF.
Afifi, M., Brubaker, M. A., and Brown, M. S. (2022). Auto
white-balance correction for mixed-illuminant scenes.
In Winter Conf. Appl. Comput. Vision, pages 1210–
1219, Waikoloa, HI, USA. IEEE/CVF.
Akazawa, T., Kinoshita, Y., Shiota, S., and Kiya, H. (2022).
N-white balancing: White balancing for multiple il-
luminants including non-uniform illumination. IEEE
Access, 10:89051–89062.
Bach, M. (Last accessed: 18.02.2023). Color assimilation
illusions. michaelbach.de/ot.
Bach, M. and Poloschek, C. M. (2006). Optical illusions.
Adv. Clin. Neurosci. Rehabil., 6(2):20–21.
Beigpour, S., Riess, C., Van De Weijer, J., and An-
gelopoulou, E. (2013). Multi-illuminant estimation
with conditional random fields. IEEE Trans. Image
Process., 23:83–96.
Bianco, S., Cusano, C., and Schettini, R. (2017). Sin-
gle and multiple illuminant estimation using convolu-
tional neural networks. IEEE Trans. Image Process.,
26(9):4347–4362.
Bleier, M., Riess, C., Beigpour, S., Eibenberger, E., An-
gelopoulou, E., Tr
¨
oger, T., and Kaup, A. (2011). Color
constancy and non-uniform illumination: Can existing
algorithms work? In IEEE Int. Conf. Comput. Vision
Workshops, pages 774–781. IEEE.
Brainard, D. H., Long
`
ere, P., Delahunt, P. B., Freeman,
W. T., Kraft, J. M., and Xiao, B. (2006). Bayesian
model of human color constancy. J. Vision, 6(11):10–
10.
Brainard, D. H. and Radonjic, A. (2004). Color constancy.
The Visual Neurosciences, 1:948–961.
Buchsbaum, G. (1980). A spatial processor model for object
colour perception. J. Franklin Inst., 310:1–26.
Buzzelli, M., Zini, S., Bianco, S., Ciocca, G., Schettini, R.,
and Tchobanou, M. K. (2023). Analysis of biases in
automatic white balance datasets and methods. Color
Res. Appl., 48(1):40–62.
Cheng, D., Prasad, D. K., and Brown, M. S. (2014). Illu-
minant estimation for color constancy: Why spatial-
domain methods work and the role of the color distri-
bution. J. Opt. Soc. America A, 31:1049–1058.
Corney, D. and Lotto, R. B. (2007). What are lightness
illusions and why do we see them? PLoS Comput.
Biol., 3(9):e180.
Das, P., Liu, Y., Karaoglu, S., and Gevers, T. (2021).
Generative models for multi-illumination color con-
stancy. In Conf. Comput. Vision Pattern Recognit.,
pages 1194–1203, Montreal, BC, Canada. IEEE/CVF.
Dixon, E. L. and Shapiro, A. G. (2017). Spatial filtering,
color constancy, and the color-changing dress. J. Vi-
sion, 17(3):7–7.
Domislovi
´
c, I., Vr
ˇ
snak, D., Suba
ˇ
si
´
c, M., and Lon
ˇ
cari
´
c, S.
(2022). One-net: Convolutional color constancy sim-
plified. Pattern Recognit. Letters, 159:31–37.
Drew, M. S., Joze, H. R. V., and Finlayson, G. D. (2012).
Specularity, the zeta-image, and information-theoretic
illuminant estimation. In Workshops Demonstrations:
Eur. Conf. Comput. Vision, pages 411–420, Florence,
Italy. Springer.
Ebner, M. (2003). Combining white-patch retinex and the
gray world assumption to achieve color constancy for
multiple illuminants. In Joint Pattern Recognit. Symp.,
pages 60–67, Magdeburg, Germany. Springer.
Ebner, M. (2004). A parallel algorithm for color constancy.
J. Parallel Distrib. Comput., 64:79–88.
Ebner, M. (2007). Color Constancy, 1st ed. Wiley Publish-
ing, ISBN: 0470058299.
Ebner, M. (2009). Color constancy based on local space
average color. Mach. Vision Appl., 20(5):283–301.
Ebner, M. (2011). On the effect of scene motion on color
constancy. Biol. Cybern., 105(5):319–330.
Emery, K. J. and Webster, M. A. (2019). Individual dif-
ferences and their implications for color perception.
Current Opinion Behavioral Sciences, 30:28–33.
Ershov, E., Tesalin, V., Ermakov, I., and Brown, M. S.
(2023). Physically-plausible illumination distribu-
tion estimation. In Int. Conf. Comput. Vision, pages
12928–12936. IEEE/CVF.
Finlayson, G. D. and Hordley, S. D. (2001). Color con-
stancy at a pixel. J. Opt. Soc. America A, 18(2):253–
264.
Finlayson, G. D. and Trezzi, E. (2004). Shades of gray and
colour constancy. In Color and Imag. Conf., pages 37–
41, Scottsdale, AZ, USA. Society for Imaging Science
and Technology.
Funt, B. V., Ciurea, F., and McCann, J. J. (2004). Retinex
in matlab™. J. Electron. Imag., 13(1).
Gao, S., Han, W., Yang, K., Li, C., and Li, Y. (2014). Ef-
ficient color constancy with local surface reflectance
statistics. In Eur. Conf. Comput. Vision, pages 158–
173, Zurich, Switzerland. Springer.
Gao, S., Zhang, M., Li, C., and Li, Y. (2017). Improv-
ing color constancy by discounting the variation of
camera spectral sensitivity. J. Opt. Soc. America A,
34:1448–1462.
Gao, S.-B., Ren, Y.-Z., Zhang, M., and Li, Y.-J. (2019).
Combining bottom-up and top-down visual mecha-
nisms for color constancy under varying illumination.
IEEE Trans. Image Process., 28(9):4387–4400.
Gao, S.-B., Yang, K.-F., Li, C.-Y., and Li, Y.-J.
(2015). Color constancy using double-opponency.
IEEE Transactions Pattern Anal. Mach. Intell.,
37(10):1973–1985.
Gegenfurtner, K. R. (1999). Reflections on colour con-
stancy. Nature, 402(6764):855–856.
Gehler, P. V., Rother, C., Blake, A., Minka, T., and Sharp, T.
(2008). Bayesian color constancy revisited. In Conf.
Investigating Color Illusions from the Perspective of Computational Color Constancy
35