
ACKNOWLEDGEMENTS
Funded by the Deutsche Forschungsgemeinschaft
(DFG, German Research Foundation) under Ger-
many’s Excellence Strategy – EXC-2023 Internet of
Production – 390621612.
ROLES & CONTRIBUTIONS
Marco Kemmerling: Conceptualization, Methodol-
ogy, Software, Visualization, Writing – Original Draft
Anas Abdelrazeq: Writing - Review & Editing
Robert H. Schmitt: Project administration, Funding
REFERENCES
Cheng, Y., Wu, Z., Liu, K., Wu, Q., and Wang, Y. (2019).
Smart DAG tasks scheduling between trusted and un-
trusted entities using the MCTS method. Sustainabil-
ity, 11(7):1826. Publisher: MDPI.
Govind, N., Bullock, E. W., He, L., Iyer, B., Krishna, M.,
and Lockwood, C. S. (2008). Operations management
in automated semiconductor manufacturing with inte-
grated targeting, near real-time scheduling, and dis-
patching. IEEE Transactions on Semiconductor Man-
ufacturing, 21(3):363–370. Publisher: IEEE.
G
¨
oppert, A., Mohring, L., and Schmitt, R. H. (2021).
Predicting performance indicators with ANNs for
AI-based online scheduling in dynamically intercon-
nected assembly systems. Production Engineering,
15(5):619–633. Publisher: Springer.
Hu, Z., Tu, J., and Li, B. (2019). Spear: Optimized
Dependency-Aware Task Scheduling with Deep Re-
inforcement Learning. In 2019 IEEE 39th Interna-
tional Conference on Distributed Computing Systems
(ICDCS), pages 2037–2046.
Kemmerling, M., L
¨
utticke, D., and Schmitt, R. H. (2024).
Beyond Games: A Systematic Review of Neural
Monte Carlo Tree Search Applications. Applied In-
telligence. Publisher: Springer (In Press).
McKay, K. N. and Wiers, V. C. (2003). Planning, schedul-
ing and dispatching tasks in production control. Cog-
nition, Technology & Work, 5:82–93. Publisher:
Springer.
Misra, D. (2019). Mish: A self regularized non-monotonic
activation function. arXiv preprint arXiv:1908.08681.
Oren, J., Ross, C., Lefarov, M., Richter, F., Taitler, A.,
Feldman, Z., Di Castro, D., and Daniel, C. (2021).
SOLO: search online, learn offline for combinatorial
optimization problems. In Proceedings of the Inter-
national Symposium on Combinatorial Search, vol-
ume 12, pages 97–105. Issue: 1.
Raffin, A., Hill, A., Ernestus, M., Gleave, A., Kanervisto,
A., and Dormann, N. (2019). Stable baselines3.
Rinciog, A., Mieth, C., Scheikl, P. M., and Meyer, A.
(2020). Sheet-metal production scheduling using Al-
phaGo Zero. In Proceedings of the Conference on
Production Systems and Logistics: CPSL 2020.
Samsonov, V., Hicham, K. B., and Meisen, T. (2022). Rein-
forcement Learning in Manufacturing Control: Base-
lines, challenges and ways forward. Engineering Ap-
plications of Artificial Intelligence, 112. Publisher:
Elsevier.
Samsonov, V., Kemmerling, M., Paegert, M., L
¨
utticke, D.,
Sauermann, F., G
¨
utzlaff, A., Schuh, G., and Meisen,
T. (2021). Manufacturing Control in Job Shop En-
vironments with Reinforcement Learning. In Pro-
ceedings of the International Conference on Agents
and Artificial Intelligence: ICAART 2021, volume 2,
pages 589–597.
Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L.,
Van Den Driessche, G., Schrittwieser, J., Antonoglou,
I., Panneershelvam, V., Lanctot, M., and others
(2016). Mastering the game of Go with deep neural
networks and tree search. nature, 529(7587):484–489.
Publisher: Nature Publishing Group.
Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai,
M., Guez, A., Lanctot, M., Sifre, L., Kumaran, D.,
Graepel, T., and others (2018). A general reinforce-
ment learning algorithm that masters chess, shogi, and
Go through self-play. Science, 362(6419):1140–1144.
Publisher: American Association for the Advance-
ment of Science.
Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou,
I., Huang, A., Guez, A., Hubert, T., Baker, L.,
Lai, M., Bolton, A., and others (2017). Mastering
the game of go without human knowledge. nature,
550(7676):354–359. Publisher: Nature Publishing
Group.
Vodopivec, T., Samothrakis, S., and Ster, B. (2017). On
monte carlo tree search and reinforcement learning.
Journal of Artificial Intelligence Research, 60:881–
936.
Wang, J. H., Luo, P. C., Xiong, H. Q., Zhang, B. W.,
and Peng, J. Y. (2020). Parallel Machine Workshop
Scheduling Using the Integration of Proximal Policy
Optimization Training and Monte Carlo Tree Search.
In 2020 Chinese Automation Congress (CAC), pages
3277–3282. IEEE.
Zhang, C., Song, W., Cao, Z., Zhang, J., Tan, P. S., and Xu,
C. (2020). Learning to dispatch for job shop schedul-
ing via deep reinforcement learning. arXiv preprint
arXiv:2010.12367.
ICAART 2024 - 16th International Conference on Agents and Artificial Intelligence
158