
Falamarzi, Y., Palizdan, N., Huang, Y. F., and Lee, T. S.
(2014). Estimating evapotranspiration from tempera-
ture and wind speed data using artificial and wavelet
neural networks (wnns). Agricultural Water Manage-
ment, 140:26–36.
Gunning, D., Stefik, M., Choi, J., Miller, T., Stumpf, S.,
and Yang, G.-Z. (2019). Xai—explainable artificial
intelligence. Science robotics, 4(37):eaay7120.
Hochreiter, S. and Schmidhuber, J. (1997). Long short-term
memory. Neural computation, 9(8):1735–1780.
Hussein, R., Lee, S., Ward, R., and McKeown, M. J.
(2021). Semi-dilated convolutional neural networks
for epileptic seizure prediction. Neural Networks,
139:212–222.
Jana, R. and Mukherjee, I. (2021). Deep learning based ef-
ficient epileptic seizure prediction with EEG channel
optimization. Biomedical Signal Processing and Con-
trol, 68:102767.
Ji, S., Xu, W., Yang, M., and Yu, K. (2012). 3d convolu-
tional neural networks for human action recognition.
IEEE transactions on pattern analysis and machine
intelligence, 35(1):221–231.
Kareem, A. and Kijewski, T. (2002). Time-frequency anal-
ysis of wind effects on structures. Journal of Wind
Engineering and Industrial Aerodynamics, 90(12-
15):1435–1452.
LeCun, Y., Bengio, Y., et al. (1995). Convolutional net-
works for images, speech, and time series. The
handbook of brain theory and neural networks,
3361(10):1995.
Liu, Y., Jain, A., Eng, C., Way, D. H., Lee, K., Bui, P.,
Kanada, K., de Oliveira Marinho, G., Gallegos, J.,
Gabriele, S., et al. (2020). A deep learning system
for differential diagnosis of skin diseases. Nature
medicine, 26(6):900–908.
Niknazar, H., Maghooli, K., and Nasrabadi, A. M. (2015).
Epileptic seizure prediction using statistical behavior
of local extrema and fuzzy logic system. international
journal of computer applications, 113(2).
Ozcan, A. R. and Erturk, S. (2019). Seizure prediction
in scalp EEG using 3d convolutional neural networks
with an image-based approach. IEEE Transactions
on Neural Systems and Rehabilitation Engineering,
27(11):2284–2293.
Ozdemir, M. A., Cura, O. K., and Akan, A. (2021). Epilep-
tic EEG classification by using time-frequency images
for deep learning. International journal of neural sys-
tems, 31(08):2150026.
Peng, Z., Chu, F., and He, Y. (2002). Vibration signal
analysis and feature extraction based on reassigned
wavelet scalogram. Journal of Sound and Vibration,
253(5):1087–1100.
San-Segundo, R., Gil-Martin, M., D’Haro-Enr
´
ıquez, L. F.,
and Pardo, J. M. (2019). Classification of epileptic
EEG recordings using signal transforms and convo-
lutional neural networks. Computers in biology and
medicine, 109:148–158.
Shafiezadeh, S., Duma, G. M., Mento, G., Danieli, A., An-
toniazzi, L., Del Popolo Cristaldi, F., Bonanni, P., and
Testolin, A. (2023). Methodological issues in evaluat-
ing machine learning models for EEG seizure predic-
tion: Good cross-validation accuracy does not guaran-
tee generalization to new patients. Applied Sciences,
13(7):4262.
Thangavel, P., Thomas, J., Peh, W. Y., Jing, J., Yuvaraj, R.,
Cash, S. S., Chaudhari, R., Karia, S., Rathakrishnan,
R., Saini, V., et al. (2021). Time–frequency decompo-
sition of scalp electroencephalograms improves deep
learning-based epilepsy diagnosis. International jour-
nal of neural systems, 31(08):2150032.
Tsiouris, K. M., Pezoulas, V. C., Zervakis, M., Konitsio-
tis, S., Koutsouris, D. D., and Fotiadis, D. I. (2018).
A long short-term memory deep learning network for
the prediction of epileptic seizures using EEG signals.
Computers in biology and medicine, 99:24–37.
T
¨
urk,
¨
O. and
¨
Ozerdem, M. S. (2019). Epilepsy detection by
using scalogram based convolutional neural network
from EEG signals. Brain sciences, 9(5):115.
Usman, S. M., Khalid, S., and Aslam, M. H. (2020). Epilep-
tic seizures prediction using deep learning techniques.
Ieee Access, 8:39998–40007.
Van Mierlo, P., Vorderw
¨
ulbecke, B. J., Staljanssens,
W., Seeck, M., and Vulli
´
emoz, S. (2020). Ictal
EEG source localization in focal epilepsy: Review
and future perspectives. Clinical Neurophysiology,
131(11):2600–2616.
Varlı, M. and Yılmaz, H. (2023). Multiple classification
of EEG signals and epileptic seizure diagnosis with
combined deep learning. Journal of Computational
Science, 67:101943.
Varnosfaderani, S. M., Rahman, R., Sarhan, N. J.,
Kuhlmann, L., Asano, E., Luat, A., and Alhawari,
M. (2021). A two-layer lstm deep learning model for
epileptic seizure prediction. In 2021 IEEE 3rd Inter-
national Conference on Artificial Intelligence Circuits
and Systems (AICAS), pages 1–4. IEEE.
Wang, Z., Yang, J., and Sawan, M. (2021). A novel multi-
scale dilated 3d cnn for epileptic seizure prediction.
pages 1–4.
World Health Organization (2023). Epilepsy, https://www.
who.int/en/news-room/fact-sheets/detail/epilepsy.
Yildiz, A., Zan, H., and Said, S. (2021). Classification and
analysis of epileptic EEG recordings using convolu-
tional neural network and class activation mapping.
Biomedical signal processing and control, 68:102720.
BIOSIGNALS 2024 - 17th International Conference on Bio-inspired Systems and Signal Processing
590