
ter search should be conducted to explore better qual-
ity/time tradeoffs. Having seen that combinations of
existing layerwise learning approaches with SHA can
increase the solution quality even further, gathering
more information on their interplay might open up
new approaches of quantum learning methods that
are especially targeted towards attacking multiple is-
sues of vanishing gradients concurrently, as, in our
case locality and expressiveness. In conclusion, our
contribution uncovers a new, locality based, approach
towards efficiently learning parameters in parameter-
ized quantum circuits.
ACKNOWLEDGEMENTS
This paper was partially funded by the German Fed-
eral Ministry for Economic Affairs and Climate Ac-
tion through the funding program "Quantum Comput-
ing – Applications for the industry" based on the al-
lowance "Development of digital technologies" (con-
tract number: 01MQ22008A).
REFERENCES
Aharonov, D., van Dam, W., Kempe, J., Landau, Z., Lloyd,
S., and Regev, O. (2004). Adiabatic quantum compu-
tation is equivalent to standard quantum computation.
In Proceedings of the 45th Annual IEEE Symposium
on Foundations of Computer Science, FOCS ’04, page
42–51, USA. IEEE Computer Society.
Albash, T. and Lidar, D. A. (2018). Demonstration of a scal-
ing advantage for a quantum annealer over simulated
annealing. Phys. Rev. X, 8:031016.
Bansal, N. (2014). New Developments in Iterated Round-
ing (Invited Talk). In Raman, V. and Suresh, S. P., ed-
itors, 34th International Conference on Foundation of
Software Technology and Theoretical Computer Sci-
ence (FSTTCS 2014), volume 29 of Leibniz Inter-
national Proceedings in Informatics (LIPIcs), pages
1–10, Dagstuhl, Germany. Schloss Dagstuhl–Leibniz-
Zentrum fuer Informatik.
Bengio, Y., Lamblin, P., Popovici, D., and Larochelle, H.
(2006). Greedy layer-wise training of deep networks.
In Schölkopf, B., Platt, J., and Hoffman, T., editors,
Advances in Neural Information Processing Systems,
volume 19. MIT Press.
Blekos, K., Brand, D., Ceschini, A., Chou, C.-H., Li, R.-
H., Pandya, K., and Summer, A. (2023). A review on
quantum approximate optimization algorithm and its
variants.
Born, M. and Fock, V. (1928). Beweis des Adiabatensatzes.
Zeitschrift für Phys., 51(3):165–180.
Bradley, D. M. (2010). Learning in modular systems.
Carnegie Mellon University.
Campos, E., Nasrallah, A., and Biamonte, J. (2021). Abrupt
transitions in variational quantum circuit training.
Phys. Rev. A, 103:032607.
Cerezo, M., Arrasmith, A., Babbush, R., Benjamin, S. C.,
Endo, S., Fujii, K., McClean, J. R., Mitarai, K., Yuan,
X., Cincio, L., and Coles, P. J. (2021a). Variational
quantum algorithms. Nat. Rev. Phys., 3(9):625–644.
Cerezo, M., Sone, A., Volkoff, T., Cincio, L., and Coles,
P. J. (2021b). Cost function dependent barren plateaus
in shallow parametrized quantum circuits. Nature
communications, 12(1):1791.
Deutsch, D. and Jozsa, R. (1992). Rapid solution of prob-
lems by quantum computation. Proceedings of the
Royal Society of London. Series A: Mathematical and
Physical Sciences, 439(1907):553–558.
Diaz, N., García-Martín, D., Kazi, S., Larocca, M., and
Cerezo, M. (2023). Showcasing a barren plateau the-
ory beyond the dynamical lie algebra. arXiv preprint
arXiv:2310.11505.
Du, Y., Huang, T., You, S., Hsieh, M.-H., and Tao, D.
(2022). Quantum circuit architecture search for varia-
tional quantum algorithms. npj Quantum Inf., 8(1):62.
Farhi, E., Goldstone, J., and Gutmann, S. (2014). A quan-
tum approximate optimization algorithm.
Fontana, E., Herman, D., Chakrabarti, S., Kumar, N.,
Yalovetzky, R., Heredge, J., Sureshbabu, S. H., and
Pistoia, M. (2023). The adjoint is all you need: Char-
acterizing barren plateaus in quantum ansätze.
Gilbert, E. N. (1959). Random Graphs. The Annals of Math-
ematical Statistics, 30(4):1141 – 1144.
Glorot, X. and Bengio, Y. (2010). Understanding the diffi-
culty of training deep feedforward neural networks. In
Teh, Y. W. and Titterington, M., editors, Proceedings
of the Thirteenth International Conference on Artifi-
cial Intelligence and Statistics, volume 9 of Proceed-
ings of Machine Learning Research, pages 249–256,
Chia Laguna Resort, Sardinia, Italy. PMLR.
Gomez, S., Hennart, J.-P., and Powell, M. J. D., editors
(1994). A Direct Search Optimization Method That
Models the Objective and Constraint Functions by
Linear Interpolation, pages 51–67. Springer Nether-
lands, Dordrecht.
Grover, L. K. (1996). A fast quantum mechanical algorithm
for database search. In Proceedings of the Twenty-
Eighth Annual ACM Symposium on Theory of Com-
puting, STOC ’96, page 212–219, New York, NY,
USA. Association for Computing Machinery.
Hagberg, A., Swart, P., and S Chult, D. (2008). Explor-
ing network structure, dynamics, and function using
networkx. Technical report, Los Alamos National
Lab.(LANL), Los Alamos, NM (United States).
Holmes, Z., Sharma, K., Cerezo, M., and Coles, P. J. (2022).
Connecting ansatz expressibility to gradient magni-
tudes and barren plateaus. PRX Quantum, 3:010313.
Huang, Y., Lei, H., and Li, X. (2020). An empirical study
of optimizers for quantum machine learning. In 2020
IEEE 6th International Conference on Computer and
Communications (ICCC), pages 1560–1566.
Joshi, N., Katyayan, P., and Ahmed, S. A. (2021). Eval-
uating the performance of some local optimizers for
ICAART 2024 - 16th International Conference on Agents and Artificial Intelligence
108