
REFERENCES
Chen, Z., Liu, J., Gu, W., Su, Y., and Lyu, M. R.
(2021). Experience report: Deep learning-based sys-
tem log analysis for anomaly detection. arXiv preprint
arXiv:2107.05908.
Cotton, M., Vegoda, L., Bonica, R., and Haberman, B.
(2013). Special-purpose ip address registries. Tech-
nical report, IETF.
Du, M. and Li, F. (2016). Spell: Streaming parsing of sys-
tem event logs. In 2016 IEEE 16th International Con-
ference on Data Mining, pages 859–864. IEEE.
Du, M., Li, F., Zheng, G., and Srikumar, V. (2017).
Deeplog: Anomaly detection and diagnosis from sys-
tem logs through deep learning. In Proceedings of the
2017 ACM SIGSAC conference on computer and com-
munications security, pages 1285–1298.
Garcia, S., Grill, M., Stiborek, J., and Zunino, A. (2014).
An empirical comparison of botnet detection methods.
computers & security, 45:100–123.
He, P., Zhu, J., Zheng, Z., and Lyu, M. R. (2017). Drain: An
online log parsing approach with fixed depth tree. In
2017 IEEE international conference on web services
(ICWS), pages 33–40. IEEE.
He, S., Zhu, J., He, P., and Lyu, M. R. (2016). Experi-
ence report: System log analysis for anomaly detec-
tion. In 2016 IEEE 27th international symposium on
software reliability engineering (ISSRE), pages 207–
218. IEEE.
He, S., Zhu, J., He, P., and Lyu, M. R. (2020).
Loghub: a large collection of system log datasets
towards automated log analytics. arXiv preprint
arXiv:2008.06448.
Hettich, S. (1999). Kdd cup 1999 data. The UCI KDD
Archive.
Kim, J., Kim, J., Thu, H. L. T., and Kim, H. (2016). Long
short term memory recurrent neural network classifier
for intrusion detection. In 2016 international confer-
ence on platform technology and service (PlatCon),
pages 1–5. IEEE.
Kim, T.-Y. and Cho, S.-B. (2018). Web traffic anomaly de-
tection using c-lstm neural networks. Expert Systems
with Applications, 106:66–76.
Li, G. and Jung, J. J. (2022). Deep learning for anomaly
detection in multivariate time series: Approaches, ap-
plications, and challenges. Information Fusion.
Liu, F., Wen, Y., Zhang, D., Jiang, X., Xing, X., and Meng,
D. (2019). Log2vec: A heterogeneous graph embed-
ding based approach for detecting cyber threats within
enterprise. In Proceedings of the 2019 ACM SIGSAC
conference on computer and communications secu-
rity, pages 1777–1794.
Lu, S., Wei, X., Li, Y., and Wang, L. (2018). Detect-
ing anomaly in big data system logs using convolu-
tional neural network. In 2018 IEEE 16th Intl Conf
on Dependable, Autonomic and Secure Computing,
16th Intl Conf on Pervasive Intelligence and Comput-
ing, 4th Intl Conf on Big Data Intelligence and Com-
puting and Cyber Science and Technology Congress
(DASC/PiCom/DataCom/CyberSciTech), pages 151–
158. IEEE.
Maim
´
o, L. F., G
´
omez,
´
A. L. P., Clemente, F. J. G., P
´
erez,
M. G., and P
´
erez, G. M. (2018). A self-adaptive
deep learning-based system for anomaly detection in
5g networks. Ieee Access, 6:7700–7712.
Makanju, A. A., Zincir-Heywood, A. N., and Milios, E. E.
(2009). Clustering event logs using iterative partition-
ing. In Proceedings of the 15th ACM SIGKDD inter-
national conference on Knowledge discovery and data
mining, pages 1255–1264.
Meng, W., Liu, Y., Zhu, Y., Zhang, S., Pei, D., Liu, Y.,
Chen, Y., Zhang, R., Tao, S., Sun, P., et al. (2019).
Loganomaly: Unsupervised detection of sequential
and quantitative anomalies in unstructured logs. In
IJCAI, volume 19, pages 4739–4745.
Nedelkoski, S., Bogatinovski, J., Acker, A., Cardoso, J.,
and Kao, O. (2020). Self-attentive classification-based
anomaly detection in unstructured logs. In 2020 IEEE
International Conference on Data Mining (ICDM),
pages 1196–1201. IEEE.
Nguyen, V. Q., Nguyen, V. H., Hoang, T. H., and Shone,
N. (2022). A novel deep clustering variational auto-
encoder for anomaly-based network intrusion detec-
tion. In 2022 14th International Conference on
Knowledge and Systems Engineering (KSE), pages 1–
7. IEEE.
Podder, P., Bharati, S., Mondal, M., Paul, P. K., and
Kose, U. (2021). Artificial neural network for cy-
bersecurity: A comprehensive review. arXiv preprint
arXiv:2107.01185.
Ring, M., Dallmann, A., Landes, D., and Hotho, A. (2017).
Ip2vec: Learning similarities between ip addresses. In
2017 IEEE International Conference on Data Mining
Workshops (ICDMW), pages 657–666.
Sarhan, M., Layeghy, S., Moustafa, N., and Portmann,
M. (2021). Netflow datasets for machine learning-
based network intrusion detection systems. In Big
Data Technologies and Applications: 10th EAI Inter-
national Conference, BDTA 2020, and 13th EAI In-
ternational Conference on Wireless Internet, WiCON
2020, Virtual Event, December 11, 2020, Proceedings
10, pages 117–135. Springer.
Tang, T. A., Mhamdi, L., McLernon, D., Zaidi, S. A. R., and
Ghogho, M. (2016). Deep learning approach for net-
work intrusion detection in software defined network-
ing. In 2016 international conference on wireless net-
works and mobile communications (WINCOM), pages
258–263. IEEE.
Zhang, X., Xu, Y., Lin, Q., Qiao, B., Zhang, H., Dang, Y.,
Xie, C., Yang, X., Cheng, Q., Li, Z., et al. (2019).
Robust log-based anomaly detection on unstable log
data. In Proceedings of the 2019 27th ACM Joint
Meeting on European Software Engineering Confer-
ence and Symposium on the Foundations of Software
Engineering, pages 807–817.
Zhu, J., He, S., Liu, J., He, P., Xie, Q., Zheng, Z., and Lyu,
M. R. (2019). Tools and benchmarks for automated
log parsing. In 2019 IEEE/ACM 41st International
Conference on Software Engineering: Software Engi-
neering in Practice, pages 121–130. IEEE.
ICISSP 2024 - 10th International Conference on Information Systems Security and Privacy
690