memory for continual learning. In Advances in neural
information processing systems, pages 6467–6476.
Maschler, B., Pham, T. T. H., and Weyrich, M. (2021).
Regularization-based continual learning for anomaly
detection in discrete manufacturing. Procedia CIRP,
104:452–457.
Mirzadeh, S. I., Farajtabar, M., Pascanu, R., and
Ghasemzadeh, H. (2020). Understanding the role
of training regimes in continual learning. Advances
in Neural Information Processing Systems, 33:7308–
7320.
Ng, H.-W. and Winkler, S. (2014). A data-driven approach
to cleaning large face datasets. In 2014 IEEE interna-
tional conference on image processing (ICIP), pages
343–347. IEEE.
Ostapenko, O., Puscas, M., Klein, T., Jahnichen, P., and
Nabi, M. (2019). Learning to remember: A synap-
tic plasticity driven framework for continual learning.
In Proceedings of the IEEE/CVF conference on com-
puter vision and pattern recognition, pages 11321–
11329.
Parikh, N. and Boyd, S. (2014). Proximal algorithms. Foun-
dations and Trends in optimization, 1(3):127–239.
Parisi, G. I., Kemker, R., Part, J. L., Kanan, C., and
Wermter, S. (2019). Continual lifelong learning with
neural networks: A review. Neural Networks, 113:54–
71.
Riemer, M., Cases, I., Ajemian, R., Liu, M., Rish, I., Tu,
Y., and Tesauro, G. (2018). Learning to learn with-
out forgetting by maximizing transfer and minimizing
interference. arXiv preprint arXiv:1810.11910.
Rolnick, D., Ahuja, A., Schwarz, J., Lillicrap, T., and
Wayne, G. (2019). Experience replay for continual
learning. Advances in Neural Information Processing
Systems, 32.
Rusu, A. A., Rabinowitz, N. C., Desjardins, G., Soyer,
H., Kirkpatrick, J., Kavukcuoglu, K., Pascanu, R.,
and Hadsell, R. (2016). Progressive neural networks.
arXiv preprint arXiv:1606.04671.
Sankararaman, K. A., De, S., Xu, Z., Huang, W. R., and
Goldstein, T. (2020). The impact of neural net-
work overparameterization on gradient confusion and
stochastic gradient descent. In International confer-
ence on machine learning, pages 8469–8479. PMLR.
Schofield, D. P., Albery, G. F., Firth, J. A., Mielke, A.,
Hayashi, M., Matsuzawa, T., Biro, D., and Carvalho,
S. (2023). Automated face recognition using deep
neural networks produces robust primate social net-
works and sociality measures. Methods in Ecology
and Evolution.
Schwarz, J., Czarnecki, W., Luketina, J., Grabska-
Barwinska, A., Teh, Y. W., Pascanu, R., and Hadsell,
R. (2018). Progress & compress: A scalable frame-
work for continual learning. In International Confer-
ence on Machine Learning, pages 4528–4537. PMLR.
Serra, J., Suris, D., Miron, M., and Karatzoglou, A. (2018).
Overcoming catastrophic forgetting with hard atten-
tion to the task. arXiv preprint arXiv:1801.01423.
Sharma, T., Debaque, B., Duclos, N., Chehri, A., Kinder,
B., and Fortier, P. (2022). Deep learning-based ob-
ject detection and scene perception under bad weather
conditions. Electronics, 11(4):563.
Smith, J. S., Tian, J., Halbe, S., Hsu, Y.-C., and Kira, Z.
(2023). A closer look at rehearsal-free continual learn-
ing. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages
2409–2419.
Sokar, G., Mocanu, D. C., and Pechenizkiy, M. (2021).
Learning invariant representation for continual learn-
ing. arXiv preprint arXiv:2101.06162.
Vinyals, O., Blundell, C., Lillicrap, T., Wierstra, D., et al.
(2016). Matching networks for one shot learning.
Advances in neural information processing systems,
29:3630–3638.
Wang, F.-Y., Zhou, D.-W., Ye, H.-J., and Zhan, D.-C.
(2022a). Foster: Feature boosting and compression
for class-incremental learning. In European confer-
ence on computer vision, pages 398–414. Springer.
Wang, Z., Zhan, Z., Gong, Y., Yuan, G., Niu, W., Jian, T.,
Ren, B., Ioannidis, S., Wang, Y., and Dy, J. (2022b).
Sparcl: Sparse continual learning on the edge. Ad-
vances in Neural Information Processing Systems,
35:20366–20380.
Yan, Q., Gong, D., Liu, Y., van den Hengel, A., and Shi,
J. Q. (2022). Learning bayesian sparse networks with
full experience replay for continual learning. In Pro-
ceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 109–118.
Yan, S., Xie, J., and He, X. (2021). Der: Dynamically ex-
pandable representation for class incremental learn-
ing. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages
3014–3023.
Yoon, J., Madaan, D., Yang, E., and Hwang, S. J. (2021).
Online coreset selection for rehearsal-based continual
learning. arXiv preprint arXiv:2106.01085.
Yoon, J., Yang, E., Lee, J., and Hwang, S. J. (2017). Life-
long learning with dynamically expandable networks.
arXiv preprint arXiv:1708.01547.
Yuan, M. and Lin, Y. (2006). Model selection and esti-
mation in regression with grouped variables. Journal
of the Royal Statistical Society: Series B (Statistical
Methodology), 68(1):49–67.
Zeng, M., Xue, W., Liu, Q., and Guo, Y. (2023). Contin-
ual learning with dirichlet generative-based rehearsal.
arXiv preprint arXiv:2309.06917.
Zhou, D.-W., Wang, Q.-W., Qi, Z.-H., Ye, H.-J., Zhan, D.-
C., and Liu, Z. (2023). Deep class-incremental learn-
ing: A survey. arXiv preprint arXiv:2302.03648.
Zhou, G., Sohn, K., and Lee, H. (2012). Online incremental
feature learning with denoising autoencoders. In Ar-
tificial intelligence and statistics, pages 1453–1461.
PMLR.
Zhou, M., Xiao, J., Chang, Y., Fu, X., Liu, A., Pan, J.,
and Zha, Z.-J. (2021). Image de-raining via contin-
ual learning. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition,
pages 4907–4916.
Zhou, Y., Jin, R., and Hoi, S. C.-H. (2010). Exclusive lasso
for multi-task feature selection. In Proceedings of the
thirteenth international conference on artificial intel-
ligence and statistics, pages 988–995. JMLR Work-
shop and Conference Proceedings.
ICAART 2024 - 16th International Conference on Agents and Artificial Intelligence
120