
Gobeawan, L., Lin, E., Tandon, A., Yee, A., Khoo, V., Teo,
S., Yi, S., Lim, C., Wong, S., Wise, D., et al. (2018).
Modeling trees for virtual singapore: From data acqui-
sition to citygml models. The International Archives
of the Photogrammetry, Remote Sensing and Spatial
Information Sciences, 42:55–62.
Gobeawan, L., Lin, S., Liu, X., Wong, S., Lim, C., Gaw, Y.,
Wong, N., Tan, P., Tan, C., and He, Y. (2021a). Ifc-
centric vegetation modelling for bim. ISPRS Annals
of the Photogrammetry, Remote Sensing and Spatial
Information Sciences, 8:91–98.
Gobeawan, L., Wise, D. J., Wong, S. T., Yee, A. T., Lim,
C. W., and Su, Y. (2021b). Tree species modelling
for digital twin cities. Transactions on Computational
Science XXXVIII, pages 17–35.
Golec, K. (2018). Hybrid 3D mass spring system for soft
tissue simulation. PhD thesis, Universit
´
e de Lyon.
H
¨
adrich, T., Benes, B., Deussen, O., and Pirk, S. (2017).
Interactive modeling and authoring of climbing plants.
In Computer Graphics Forum, volume 36, pages 49–
61. Wiley Online Library.
Harahap, N., Siregar, I., and Dwiyanti, F. (2018). Root
architecture and its relation with the growth char-
acteristics of three planted shorea species (diptero-
carpaceae). In IOP Conference Series: Earth and En-
vironmental Science, volume 203, page 012016. IOP
Publishing.
Imhoff, S., Pires da Silva, A., Ghiberto, P. J., Tormena,
C. A., Pilatti, M. A., and Libardi, P. L. (2016).
Physical quality indicators and mechanical behav-
ior of agricultural soils of argentina. PLoS One,
11(4):e0153827.
Jirasek, C., Prusinkiewicz, P., and Moulia, B. (2000). Inte-
grating biomechanics into developmental plant mod-
els expressed using l-systems. Plant biomechanics,
pages 615–624.
Kang, Y.-M., Choi, J.-H., Cho, H.-G., and Lee, D.-H.
(2001). An efficient animation of wrinkled cloth with
approximate implicit integration. The Visual Com-
puter, 17:147–157.
Kang, Y.-M., Choi, J.-H., Cho, H.-G., and Park, C.-J.
(2000). Fast and stable animation of cloth with an
approximated implicit method. In Proceedings Com-
puter Graphics International 2000, pages 247–255.
IEEE.
Lim, S. M. and Gobeawan, L. (2023). Hybrid mass-spring
l-system for modelling tree interactions with envi-
ronment. In Chen, T.-W. C., Fricke, A., Kahlen,
K., and St
¨
utzel, H., editors, Book of Abstracts of
the 10th International Conference on Functional-
Structural Plant Models: FSPM2023, 27- 31 March
2023, pages 102–103.
Mesit, J., Guha, R. K., and Chaudhry, S. (2007). 3d soft
body simulation using mass-spring system with inter-
nal pressure force and simplified implicit integration.
J. Comput., 2(8):34–43.
Moulton, D. E., Oliveri, H., and Goriely, A. (2020). Mul-
tiscale integration of environmental stimuli in plant
tropism produces complex behaviors. Proceedings of
the National Academy of Sciences, 117(51):32226–
32237.
Nakao, M. and Minato, K. (2010). Physics-based inter-
active volume manipulation for sharing surgical pro-
cess. IEEE Transactions on Information Technology
in Biomedicine, 14(3):809–816.
Pang, J., Lin, X., Zhang, X., Ji, J., and Geng, L. (2023).
Modelling and analysis of penetration resistance of
probes in cultivated soils. PloS one, 18(1):e0280525.
Pedersen, S. W. (2003). Simulation of rigid body dynamics.
Master’s thesis.
Pomeroy, J. (2023). Hardware, Software, Heartware: Dig-
ital Twinning for More Sustainable Built Environ-
ments. Taylor & Francis.
Prusinkiewicz, P. and Lindenmayer, A. (1990). The Algo-
rithm Beauty of Plants. Springer.
Rezaur, R., Rahardjo, H., Leong, E., and Lee, T. (2003).
Hydrologic behavior of residual soil slopes in singa-
pore. Journal of Hydrologic Engineering, 8(3):133–
144.
Russell, D. and Hunt, L. (2009). Spring constants
for hockey sticks. The Physics Teacher (sub-
mitted draft). Retrieved from: www. acs. psu.
edu/drussell/publications/russell-hunt-tpt-formatted.
pdf (Accessed 17 January 2014).
Smith, J. O. (2010). Physical audio signal processing: For
virtual musical instruments and audio effects. W3K
Publishing.
Stava, O., Pirk, S., Kratt, J., Chen, B., M
ˇ
ech, R., Deussen,
O., and Benes, B. (2014). Inverse procedural mod-
elling of trees. In Computer Graphics Forum, vol-
ume 33, pages 118–131. Wiley Online Library.
Suzuki, T. and Arikawa, T. (2010). Numerical analysis of
bulk drag coefficient in dense vegetation by immersed
boundary method. In Proc. of the 32nd Conference on
Coastal Engineering.
Tao, F., Xiao, B., Qi, Q., Cheng, J., and Ji, P. (2022). Digital
twin modeling. Journal of Manufacturing Systems,
64:372–389.
Van Haevre, W., Di Fiore, F., and Van Reeth, F. (2006).
Physically-based driven tree animations. In NPH,
pages 75–82.
Witkin, A., Baraff, D., and Kass, M. (2001). Physically
based modeling. ACM SIGGRAPH Course Notes, 25.
Wong, N. H., Tan, C. L., Kolokotsa, D. D., and Takebayashi,
H. (2021). Greenery as a mitigation and adaptation
strategy to urban heat. Nature Reviews Earth & Envi-
ronment, 2(3):166–181.
Yi, L., Li, H., Guo, J., Deussen, O., and Zhang, X. (2018).
Tree growth modelling constrained by growth equa-
tions. In Computer Graphics Forum, volume 37,
pages 239–253. Wiley Online Library.
Zhou, Y., Wang, Y., Chen, X., Zhang, L., and Wu, K.
(2017). A novel path planning algorithm based on
plant growth mechanism. Soft Computing, 21:435–
445.
ML-Tree and MRL-Tree: Combining Mass-Spring System, Rigid-Body Dynamics and L-Systems to Model Physical Effects on Trees
227