(Basel, Switzerland), 23(4), 1959. https://doi.org/
10.3390/S23041959.
Gouverneur, P.J., Li, F., M. Szikszay, T., M. Adamczyk,
W., Luedtke, K., Grzegorzek, M. (2021). Classification
of Heat-Induced Pain Using Physiological Signals. In
Information Technology in Biomedicine (pp. 239–251).
Springer International Publishing. https://doi.org/10.10
07/978-3-030-49666-1_19
Gruss, S., Treister, R., Werner, P., Traue, H. C., Crawcour,
S., Andrade, A., et al. (2015). Pain intensity recognition
rates via biopotential feature patterns with support
vector machines. PLoS one, 10(10), e0140330.
https://doi.org/10.1371/journal.pone.0140330.
Hernandez, J., Morris, R.R., Picard, R.W. (2011). Call
Center Stress Recognition with Person-Specific.
Affective Computing and Intelligent Interaction (ACII),
125–134. https://doi.org/10.1007/978-3-642-24600-
5_16
IASP (2018). IASP Announces Revised Definition of Pain -
IASP. https://www.iasp-pain.org/PublicationsNews/
NewsDetail.aspx?ItemNumber=10475.
ICD-11 (2023). MG30.0 Chronic primary pain.
https://icd.who.int/browse11/l-
m/en#/http://id.who.int/icd/entity/1326332835.
Jang, E. H., Park, B. J., Park, M. S., Kim, S. H., & Sohn, J.-
H. (2012). Analysis of physiological signals for
recognition of boredom, pain, and surprise emotions.
Journal of physiological anthropology, 34(1), 25.
https://doi.org/10.1186/s40101-015-0063-5.
Jiang, M., Mieronkoski, R., Syrjälä, E., Anzanpour, A.,
Terävä, V., Rahmani, A. M., et al. (2019). Acute pain
intensity monitoring with the classification of multiple
physiological parameters. Journal of clinical
monitoring and computing, 33(3), 493–507.
https://doi.org/10.1007/s10877-018-0174-8.
Johnson, A., Yang, F., Gollarahalli, S., Banerjee, T.,
Abrams, D., Jonassaint, J., et al. (2019). Use of mobile
health apps and wearable technology to assess changes
and predict pain during treatment of acute pain in sickle
cell disease: Feasibility study. JMIR mHealth and
uHealth, 7(12), e13671. https://doi.org/10.2196/13671.
Koenig, J., & Thayer, J. F. (2016). Sex differences in
healthy human heart rate variability: A meta-analysis.
Neuroscience and biobehavioral reviews, 64, 288–310.
doi: 10.1016/j.neubiorev.2016.03.007.
Kong, Y., Posada-Quintero, H. F., & Chon, K. H. (2021).
Sensitive Physiological Indices of Pain Based on
Differential Characteristics of Electrodermal Activity.
IEEE transactions on bio-medical engineering, 68(10),
3122–3130. https://doi.org/10.1109/TBME.2021.30652
18.
Loggia, M. L., Juneau, M., & Bushnell, M. C. (2011).
Autonomic responses to heat pain: Heart rate, skin
conductance, and their relation to verbal ratings and
stimulus intensity. Pain, 152(3), 592–598.
https://doi.org/10.1016/j.pain.2010.11.032.
Lopez-Martinez, D., & Picard, R. (2018). Continuous Pain
Intensity Estimation from Autonomic Signals with
Recurrent Neural Networks. IEEE Engineering in
Medicine and Biology Society. Annual International
Conference, 2018, 5624–5627. https://doi.org/10.1109/
EMBC.2018.8513575.
May, M., Junghaenel, D. U., Ono, M., Stone, A. A., &
Schneider, S. (2018). Ecological Momentary
Assessment Methodology in Chronic Pain Research: A
Systematic Review. The journal of pain (Londen,
England), 19(7), 699–716. https://doi.org/10.1016/
j.jpain.2018.01.006.
Mayer, S., Spickschen, J., Stein, K. V., Crevenna, R.,
Dorner, T. E., & Simon, J. (2019). The societal costs of
chronic pain and its determinants: The case of Austria.
PLoS one, 14(3), e0213889. https://doi.org/10.1371/
journal.pone.0213889.
Mestdagh, M., Verdonck, S., Piot, M., Niemeijer, K.,
Tuerlinckx, F., Kuppens, P., et al. (2022). m-Path: An
easy-to-use and flexible platform for ecological
momentary assessment and intervention in behavioral
research and clinical practice. https://doi.org/10.31234/
osf.io/uqdfs.
Moscato, S., Orlandi, S., Giannelli, A., Ostan, R., & Chiari,
L. (2022). Automatic pain assessment on cancer
patients using physiological signals recorded in real-
world contexts. IEEE Engineering in Medicine and
Biology Society. Annual International Conference,
2022, 1931–1934. https://doi.org/10.1109/EMBC482
29.2022.9871990.
Myin-Germeys, I., & Kuppens, P. (2022). The Open
Handbook of Experience Sampling Methodology: A
step-by-step guide to designing, conducting, and
analyzing ESM studies. https://www.kuleuven.be/
samenwerking/real/real-book/index.html.
Nilsen, K. B., Sand, T., Westgaard, R. H., Stovner, L. J.,
White, L. R., Bang Leistad, R., et al. (2007). Autonomic
activation and pain in response to low-grade mental
stress in fibromyalgia and shoulder/neck pain patients.
European journal of pain (Londen, England), 11(7),
743–755. https://doi.org/10.1016/j.ejpain.2006.11.004.
Ono, M., Schneider, S., Junghaenel, D. U., & Stone, A. A.
(2019). What Affects the Completion of Ecological
Momentary Assessments in Chronic Pain Research? An
Individual Patient Data Meta-Analysis. Journal of
medical Internet research, 21(2), e11398.
https://doi.org/10.2196/11398.
Pattyn, E., Lutin, E., Van Kraaij, A., Thammasan, N.,
Tourolle, D., Kosunen, I., et al. (2023a). Annotation-
Based Evaluation of Wrist EDA Quality and Response
Assessment Techniques. BIOSIGNALS 2023 - 16th
International Conference on Bio-Inspired Systems and
Signal Processing, 186–194. https://doi.org/10.5220/
0011640800003414.
Pattyn, E., Thammasan, N., Lutin, E., Tourolle, D., Van
Kraaij, A., Kosunen, I., et al. (2023b). Simulation of
ambulatory electrodermal activity and the handling of
low-quality segments. Comput. Methods Programs
Biomed., 242, 107859. https://doi.org/10.1016/j.cm
pb.2023.107859.
Reyes del Paso, G. A., Contreras-Merino, A. M., de la
Coba, P., & Duschek, S. (2021). The cardiac,
vasomotor, and myocardial branches of the baroreflex
in fibromyalgia: Associations with pain, affective