(Basel, Switzerland), 23(4), 1959. https://doi.org/ 
10.3390/S23041959. 
Gouverneur, P.J., Li, F., M. Szikszay, T., M. Adamczyk, 
W., Luedtke, K., Grzegorzek, M. (2021). Classification 
of Heat-Induced Pain Using Physiological Signals. In 
Information Technology in Biomedicine (pp. 239–251). 
Springer International Publishing. https://doi.org/10.10 
07/978-3-030-49666-1_19 
Gruss, S., Treister, R., Werner, P., Traue, H. C., Crawcour, 
S., Andrade, A., et al. (2015). Pain intensity recognition 
rates via biopotential feature patterns with support 
vector machines. PLoS one, 10(10), e0140330. 
https://doi.org/10.1371/journal.pone.0140330. 
Hernandez, J., Morris, R.R., Picard, R.W. (2011). Call 
Center Stress Recognition with Person-Specific. 
Affective Computing and Intelligent Interaction (ACII), 
125–134. https://doi.org/10.1007/978-3-642-24600-
5_16 
IASP (2018). IASP Announces Revised Definition of Pain - 
IASP. https://www.iasp-pain.org/PublicationsNews/ 
NewsDetail.aspx?ItemNumber=10475. 
ICD-11 (2023). MG30.0 Chronic primary pain. 
https://icd.who.int/browse11/l-
m/en#/http://id.who.int/icd/entity/1326332835. 
Jang, E. H., Park, B. J., Park, M. S., Kim, S. H., & Sohn, J.-
H. (2012). Analysis of physiological signals for 
recognition of boredom, pain, and surprise emotions. 
Journal of physiological anthropology,  34(1), 25. 
https://doi.org/10.1186/s40101-015-0063-5. 
Jiang, M., Mieronkoski, R., Syrjälä, E., Anzanpour, A., 
Terävä, V., Rahmani, A. M., et al. (2019). Acute pain 
intensity monitoring with the classification of multiple 
physiological parameters. Journal of clinical 
monitoring and computing, 33(3), 493–507. 
https://doi.org/10.1007/s10877-018-0174-8. 
Johnson, A., Yang, F., Gollarahalli, S., Banerjee, T., 
Abrams, D., Jonassaint, J., et al. (2019). Use of mobile 
health apps and wearable technology to assess changes 
and predict pain during treatment of acute pain in sickle 
cell disease: Feasibility study. JMIR mHealth and 
uHealth, 7(12), e13671. https://doi.org/10.2196/13671. 
Koenig, J., & Thayer, J. F. (2016). Sex differences in 
healthy human heart rate variability: A meta-analysis. 
Neuroscience and biobehavioral reviews, 64, 288–310. 
doi: 10.1016/j.neubiorev.2016.03.007. 
Kong, Y., Posada-Quintero, H. F., & Chon, K. H. (2021). 
Sensitive Physiological Indices of Pain Based on 
Differential Characteristics of Electrodermal Activity. 
IEEE transactions on bio-medical engineering, 68(10), 
3122–3130. https://doi.org/10.1109/TBME.2021.30652 
18. 
Loggia, M. L., Juneau, M., & Bushnell, M. C. (2011). 
Autonomic responses to heat pain: Heart rate, skin 
conductance, and their relation to verbal ratings and 
stimulus intensity. Pain, 152(3), 592–598. 
https://doi.org/10.1016/j.pain.2010.11.032. 
Lopez-Martinez, D., & Picard, R. (2018). Continuous Pain 
Intensity Estimation from Autonomic Signals with 
Recurrent Neural Networks. IEEE Engineering in 
Medicine and Biology Society. Annual International 
Conference, 2018, 5624–5627. https://doi.org/10.1109/ 
EMBC.2018.8513575. 
May, M., Junghaenel, D. U., Ono, M., Stone, A. A., & 
Schneider, S. (2018). Ecological Momentary 
Assessment Methodology in Chronic Pain Research: A 
Systematic Review. The journal of pain (Londen, 
England), 19(7), 699–716. https://doi.org/10.1016/ 
j.jpain.2018.01.006. 
Mayer, S., Spickschen, J., Stein, K. V., Crevenna, R., 
Dorner, T. E., & Simon, J. (2019). The societal costs of 
chronic pain and its determinants: The case of Austria. 
PLoS one,  14(3), e0213889. https://doi.org/10.1371/ 
journal.pone.0213889. 
Mestdagh, M., Verdonck, S., Piot, M., Niemeijer, K., 
Tuerlinckx, F., Kuppens, P., et al. (2022). m-Path: An 
easy-to-use and flexible platform for ecological 
momentary assessment and intervention in behavioral 
research and clinical practice. https://doi.org/10.31234/ 
osf.io/uqdfs. 
Moscato, S., Orlandi, S., Giannelli, A., Ostan, R., & Chiari, 
L. (2022). Automatic pain assessment on cancer 
patients using physiological signals recorded in real-
world contexts. IEEE Engineering in Medicine and 
Biology Society. Annual International Conference, 
2022, 1931–1934. https://doi.org/10.1109/EMBC482 
29.2022.9871990. 
Myin-Germeys, I., & Kuppens, P. (2022). The Open 
Handbook of Experience Sampling Methodology: A 
step-by-step guide to designing, conducting, and 
analyzing ESM studies. https://www.kuleuven.be/ 
samenwerking/real/real-book/index.html. 
Nilsen, K. B., Sand, T., Westgaard, R. H., Stovner, L. J., 
White, L. R., Bang Leistad, R., et al. (2007). Autonomic 
activation and pain in response to low-grade mental 
stress in fibromyalgia and shoulder/neck pain patients. 
European journal of pain (Londen, England), 11(7), 
743–755. https://doi.org/10.1016/j.ejpain.2006.11.004. 
Ono, M., Schneider, S., Junghaenel, D. U., & Stone, A. A. 
(2019). What Affects the Completion of Ecological 
Momentary Assessments in Chronic Pain Research? An 
Individual Patient Data Meta-Analysis. Journal of 
medical Internet research,  21(2), e11398. 
https://doi.org/10.2196/11398. 
Pattyn, E., Lutin, E., Van Kraaij, A., Thammasan, N., 
Tourolle, D., Kosunen, I., et al. (2023a). Annotation-
Based Evaluation of Wrist EDA Quality and Response 
Assessment  Techniques.  BIOSIGNALS 2023 - 16th 
International Conference on Bio-Inspired Systems and 
Signal Processing, 186–194. https://doi.org/10.5220/ 
0011640800003414. 
Pattyn, E., Thammasan, N., Lutin, E., Tourolle, D., Van 
Kraaij, A., Kosunen, I., et al. (2023b). Simulation of 
ambulatory electrodermal activity and the handling of 
low-quality segments. Comput. Methods Programs 
Biomed., 242, 107859. https://doi.org/10.1016/j.cm 
pb.2023.107859. 
Reyes del Paso, G. A., Contreras-Merino, A. M., de la 
Coba, P., & Duschek, S. (2021). The cardiac, 
vasomotor, and myocardial branches of the baroreflex 
in fibromyalgia: Associations with pain, affective