
D., Zhu, C., Cheng, T., Zhao, Q., Li, B., Lu, X., Zhu,
R., Wu, Y., Dai, J., Wang, J., Shi, J., Ouyang, W., Loy,
C. C., and Lin, D. (2019). MMDetection: Open mm-
lab detection toolbox and benchmark. arXiv preprint
arXiv:1906.07155.
Choi, J., Elezi, I., Lee, H.-J., Farabet, C., and Alvarez,
J. M. (2021). Active learning for deep object detec-
tion via probabilistic modeling. In Proceedings of the
IEEE/CVF International Conference on Computer Vi-
sion, pages 10264–10273.
Cohen, G., Afshar, S., Tapson, J., and Van Schaik, A.
(2017). Emnist: Extending mnist to handwritten let-
ters. In 2017 international joint conference on neural
networks (IJCNN), pages 2921–2926. IEEE.
Desai, S. V., Lagandula, A. C., Guo, W., Ninomiya, S., and
Balasubramanian, V. N. (2019). An adaptive supervi-
sion framework for active learning in object detection.
In Sidorov, K. and Hicks, Y., editors, Proceedings
of the British Machine Vision Conference (BMVC),
pages 177.1–177.13. BMVA Press.
Elezi, I., Yu, Z., Anandkumar, A., Leal-Taix
´
e, L., and Al-
varez, J. M. (2022). Not all labels are equal: Rational-
izing the labeling costs for training object detection.
In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR), pages
14492–14501.
Everingham, M., Van Gool, L., Williams, C. K. I., Winn,
J., and Zisserman, A. (2010). The pascal visual ob-
ject classes (voc) challenge. International Journal of
Computer Vision, 88(2):303–338.
Gal, Y. and Ghahramani, Z. (2016). Dropout as a bayesian
approximation: Representing model uncertainty in
deep learning. In international conference on machine
learning, pages 1050–1059. PMLR.
Gal, Y., Islam, R., and Ghahramani, Z. (2017). Deep
bayesian active learning with image data. In Interna-
tional Conference on Machine Learning, pages 1183–
1192. PMLR.
Haussmann, E., Fenzi, M., Chitta, K., Ivanecky, J., Xu, H.,
Roy, D., Mittel, A., Koumchatzky, N., Farabet, C., and
Alvarez, J. M. (2020). Scalable active learning for ob-
ject detection. In 2020 IEEE intelligent vehicles sym-
posium (iv), pages 1430–1435. IEEE.
LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998).
Gradient-based learning applied to document recogni-
tion. Proceedings of the IEEE, 86(11):2278–2324.
Li, M. and Sethi, I. K. (2006). Confidence-based active
learning. IEEE transactions on pattern analysis and
machine intelligence, 28(8):1251–1261.
Lin, T.-Y., Goyal, P., Girshick, R., He, K., and Doll
´
ar, P.
(2017). Focal loss for dense object detection. In
Proceedings of the IEEE international conference on
computer vision, pages 2980–2988.
Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P.,
Ramanan, D., Doll
´
ar, P., and Zitnick, C. L. (2014).
Microsoft coco: Common objects in context. In Euro-
pean conference on computer vision, pages 740–755.
Springer.
Netzer, Y., Wang, T., Coates, A., Bissacco, A., Wu, B., and
Ng, A. Y. (2011). Reading digits in natural images
with unsupervised feature learning.
Papadopoulos, D. P., Uijlings, J. R., Keller, F., and Ferrari,
V. (2017). Training object class detectors with click
supervision. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages
6374–6383.
Redmon, J. and Farhadi, A. (2018). Yolov3: An incremental
improvement. arXiv preprint arXiv:1804.02767.
Ren, S., He, K., Girshick, R., and Sun, J. (2015). Faster
r-cnn: Towards real-time object detection with region
proposal networks. Advances in neural information
processing systems, 28.
Roy, S., Unmesh, A., and Namboodiri, V. P. (2018).
Deep active learning for object detection. In BMVC,
page 91.
Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh,
S., Ma, S., Huang, Z., Karpathy, A., Khosla, A.,
Bernstein, M., Berg, A. C., and Fei-Fei, L. (2015).
ImageNet Large Scale Visual Recognition Challenge.
International Journal of Computer Vision (IJCV),
115(3):211–252.
Schmidt, S., Rao, Q., Tatsch, J., and Knoll, A. (2020).
Advanced active learning strategies for object detec-
tion. In 2020 IEEE Intelligent Vehicles Symposium
(IV), pages 871–876. IEEE.
Settles, B. (2009). Active learning literature survey. Com-
puter Sciences Technical Report 1648, University of
Wisconsin–Madison.
Subramanian, A. and Subramanian, A. (2018). One-click
annotation with guided hierarchical object detection.
arXiv preprint arXiv:1810.00609.
Tsvigun, A., Shelmanov, A., Kuzmin, G., Sanochkin, L.,
Larionov, D., Gusev, G., Avetisian, M., and Zhukov,
L. (2022). Towards computationally feasible deep ac-
tive learning. In Carpuat, M., de Marneffe, M.-C.,
and Meza Ruiz, I. V., editors, Findings of the Asso-
ciation for Computational Linguistics: NAACL 2022,
pages 1198–1218, Seattle, United States. Association
for Computational Linguistics.
Yoo, D. and Kweon, I. S. (2019). Learning loss for active
learning. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, pages 93–
102.
Younesian, T., Epema, D., and Chen, L. Y. (2020). Active
learning for noisy data streams using weak and strong
labelers. arXiv preprint arXiv:2010.14149.
Younesian, T., Zhao, Z., Ghiassi, A., Birke, R., and Chen,
L. Y. (2021). Qactor: Active learning on noisy la-
bels. In Asian Conference on Machine Learning,
pages 548–563. PMLR.
Yu, F., Chen, H., Wang, X., Xian, W., Chen, Y., Liu, F.,
Madhavan, V., and Darrell, T. (2020). Bdd100k: A
diverse driving dataset for heterogeneous multitask
learning. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, pages
2636–2645.
Yuan, T., Wan, F., Fu, M., Liu, J., Xu, S., Ji, X., and Ye,
Q. (2021). Multiple instance active learning for ob-
ject detection. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition,
pages 5330–5339.
Zhan, X., Wang, Q., Huang, K.-h., Xiong, H., Dou, D., and
Chan, A. B. (2022). A comparative survey of deep
active learning. arXiv preprint arXiv:2203.13450.
VISAPP 2024 - 19th International Conference on Computer Vision Theory and Applications
374