
C. C., and Lin, D. (2019). MMDetection: Open mm-
lab detection toolbox and benchmark. arXiv preprint
arXiv:1906.07155.
Choi, J., Elezi, I., Lee, H.-J., Farabet, C., and Alvarez,
J. M. (2021). Active Learning for Deep Object De-
tection via Probabilistic Modeling. In Proceedings of
the IEEE/CVF International Conference on Computer
Vision, pages 10244–10253, Montreal, QC, Canada.
IEEE.
Cohen, G., Afshar, S., Tapson, J., and Van Schaik, A.
(2017). Emnist: Extending mnist to handwritten let-
ters. In 2017 international joint conference on neural
networks (IJCNN), pages 2921–2926. IEEE.
Everingham, M., Van Gool, L., Williams, C. K., Winn, J.,
and Zisserman, A. (2010). The pascal visual object
classes (voc) challenge. International journal of com-
puter vision, 88:303–338.
Gupta, G., Sahu, A. K., and Lin, W.-Y. (2019). Noisy Batch
Active Learning with Deterministic Annealing. arXiv
preprint arXiv:1909.12473.
Haussmann, E., Fenzi, M., Chitta, K., Ivanecky, J., Xu, H.,
Roy, D., Mittel, A., Koumchatzky, N., Farabet, C., and
Alvarez, J. M. (2020). Scalable Active Learning for
Object Detection. In 2020 IEEE Intelligent Vehicles
Symposium (IV), pages 1430–1435.
He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep resid-
ual learning for image recognition. In Proceedings of
the IEEE conference on computer vision and pattern
recognition, pages 770–778.
Hu, Z., Gao, K., Zhang, X., Wang, J., Wang, H., and Han,
J. (2022). Probability differential-based class label
noise purification for object detection in aerial images.
IEEE Geoscience and Remote Sensing Letters, 19:1–
5.
Kim, K. I. (2022). Active Label Correction Using Robust
Parameter Update and Entropy Propagation. In Eu-
ropean Conference on Computer Vision, pages 1–16.
Springer.
Koksal, A., Ince, K. G., and Alatan, A. (2020). Ef-
fect of annotation errors on drone detection with
YOLOv3. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition
Workshops, pages 1030–1031.
Lin, T.-Y., Goyal, P., Girshick, R., He, K., and Doll
´
ar, P.
(2017). Focal loss for dense object detection. In
Proceedings of the IEEE international conference on
computer vision, pages 2980–2988.
Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P.,
Ramanan, D., Doll
´
ar, P., and Zitnick, C. L. (2014).
Microsoft coco: Common objects in context. In Com-
puter Vision–ECCV 2014: 13th European Confer-
ence, Zurich, Switzerland, September 6-12, 2014, Pro-
ceedings, Part V 13, pages 740–755. Springer.
Redmon, J. and Farhadi, A. (2018). Yolov3: An incremental
improvement. arXiv preprint arXiv:1804.02767.
Ren, S., He, K., Girshick, R., and Sun, J. (2015). Faster
r-cnn: Towards real-time object detection with region
proposal networks. Advances in neural information
processing systems, 28.
Riedlinger, T., Schubert, M., Kahl, K., Gottschalk, H., and
Rottmann, M. (2022). Towards Rapid Prototyping
and Comparability in Active Learning for Deep Ob-
ject Detection. arXiv preprint arXiv:2212.10836.
Rottmann, M. and Reese, M. (2023). Automated detection
of label errors in semantic segmentation datasets via
deep learning and uncertainty quantification. In Pro-
ceedings of the IEEE/CVF Winter Conference on Ap-
plications of Computer Vision, pages 3214–3223.
Roy, S., Unmesh, A., and Namboodiri, V. P. (2018). Deep
active learning for object detection. In BMVC, volume
362, page 91.
Schilling, M. P., Scherr, T., Munke, F. R., Neumann, O.,
Schutera, M., Mikut, R., and Reischl, M. (2022). Au-
tomated Annotator Variability Inspection for Biomed-
ical Image Segmentation. IEEE access, 10:2753.
Schmidt, S., Rao, Q., Tatsch, J., and Knoll, A. (2020).
Advanced active learning strategies for object detec-
tion. In 2020 IEEE Intelligent Vehicles Symposium
(IV), pages 871–876. IEEE.
Schubert, M., Riedlinger, T., Kahl, K., Kr
¨
oll, D., Schoenen,
S.,
ˇ
Segvi
´
c, S., and Rottmann, M. (2023). Identifying
label errors in object detection datasets by loss inspec-
tion. arXiv preprint arXiv:2303.06999.
Settles, B. (2009). Active learning literature survey.
Yan, S., Chaudhuri, K., and Javidi, T. (2016). Active learn-
ing from imperfect labelers. Advances in Neural In-
formation Processing Systems, 29.
Yan, Y., Rosales, R., Fung, G., Subramanian, R., and Dy, J.
(2014). Learning from multiple annotators with vary-
ing expertise. Machine Learning, 95(3):291–327.
Younesian, T., Epema, D., and Chen, L. Y. (2020). Active
learning for noisy data streams using weak and strong
labelers. arXiv preprint arXiv:2010.14149.
Younesian, T., Zhao, Z., Ghiassi, A., Birke, R., and Chen,
L. Y. (2021). Qactor: Active learning on noisy la-
bels. In Asian Conference on Machine Learning,
pages 548–563. PMLR.
Yu, F., Chen, H., Wang, X., Xian, W., Chen, Y., Liu, F.,
Madhavan, V., and Darrell, T. (2020). Bdd100k: A
diverse driving dataset for heterogeneous multitask
learning. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, pages
2636–2645.
VISAPP 2024 - 19th International Conference on Computer Vision Theory and Applications
384