
Figure 5: Balanced Accuracy (left) and IoU (right) vs. image timestamp for two models trained on different datasets: Orange
lines for training with the complete training dataset, blue lines for training with the partial training dataset. Shaded areas
indicate the min-max interval from 3 model replicates. The test metrics are plotted against the timestep of the timelapse
microscopy test dataset.
a crucial role in the envisioned automated segmenta-
tion workflow and should be well understood in order
to achieve the best possible automated ground truth
labeling for the subsequent deep learning training.
ACKNOWLEDGEMENTS
We acknowledge Jana Grote for generating and pro-
viding the image data and Octavio Reyes-Matte for
stimulating discussion. BG and CFG acknowledge
generous support by the Max Planck Society.
REFERENCES
Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.,
Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G.,
Askell, A., Agarwal, S., Herbert-Voss, A., Krueger,
G., Henighan, T., Child, R., Ramesh, A., Ziegler,
D. M., Wu, J., Winter, C., Hesse, C., Chen, M., Sigler,
E., Litwin, M., Gray, S., Chess, B., Clark, J., Berner,
C., McCandlish, S., Radford, A., Sutskever, I., and
Amodei, D. (2020). Language Models are Few-Shot
Learners. Technical report. arXiv:2005.14165 [cs]
type: article.
Campello, V. M. et al. (2021). Multi-Centre, Multi-
Vendor and Multi-Disease Cardiac Segmentation: The
M&Ms Challenge. IEEE Transactions on Medical
Imaging, 40(12).
Chollet, F. (2018). Deep Learning With Python. Manning
Publications.
Cutler, K. J., Stringer, C., Lo, T. W., Rappez, L., Strous-
trup, N., Brook Peterson, S., Wiggins, P. A., and
Mougous, J. D. (2022). Omnipose: a high-precision
morphology-independent solution for bacterial cell
segmentation. Nature Methods, 19(11).
Ducret, A., Quardokus, E. M., and Brun, Y. V. (2016). Mi-
crobej, a tool for high throughput bacterial cell detec-
tion and quantitative analysis. Nature Microbiology,
1(7).
Fortmann-Grote, C. and other (2023). Raw Data for ”Per-
formance Review of Retraining and Transfer Learn-
ing of DeLTA 2.0 for Image Segmentation for Pseu-
domonas fluorescens SBW25”.
Garc
´
ıa, V., Mollineda, R. A., and S
´
anchez, J. S. (2009). In-
dex of balanced accuracy: A performance measure for
skewed class distributions. In Araujo, H., Mendonc¸a,
A. M., Pinho, A. J., and Torres, M. I., editors, Pattern
Recognition and Image Analysis, volume 4 of Iberian
Conference on Pattern Recognition and Image Analy-
sis, IbPRIA. Springer, Berlin, Heidelberg.
Iman, M., Arabnia, H., and Rasheed, K. (2023). A review of
deep transfer learning and recent advancements. Tech-
nologies, 11.
Kim, H. E., Cosa-Linan, A., Santhanam, N., Jannesari, M.,
Maros, M. E., and Ganslandt, T. (2022). Transfer
learning for medical image classification: a literature
review. BMC Medical Imaging, 22(1).
LeCun, Y., Bengio, Y., and Hinton, G. (2015). Deep learn-
ing. Nature, 521(7553).
Ma, J., He, Y., Li, F., Han, L., You, C., and Wang, B. (2023).
Segment anything in medical images. arXiv preprint
arXiv:2304.12306.
Minaee, S., Boykov, Y., Porikli, F., Plaza, A., Kehtarnavaz,
N., and Terzopoulos, D. (2020). Image segmenta-
Performance Review of Retraining and Transfer Learning of DeLTA2 for Image Segmentation for Pseudomonas Fluorescens SBW25
279